

Cornish: A Python Interface for the Starlink AST WCS Library

Cornish is a Python interface over the Starlink AST astronomical software library, part of the Starlink Software Collection. Cornish is designed and written by Demitri Muna.

The Starlink AST library is a collection of tools for working with world coordinate systems and excels at coordinate system transformations, representing and working with regions on the celestial sphere (e.g. polygons, circles, boxes, etc.), plotting, and more.

A Python interface called starlink-pyast [http://starlink.github.io/starlink-pyast/pyast.html] (pip install starlink-pyast) written by the library’s authors, David Berry and Tim Jenness, is available, however it thinly exposes the C interface. A working knowledge of the C API is realistically a prerequisite to using starlink-pyast. Similarly, the primary documentation for the library is the that of the C version which does not refer to the Python interface.

The aim of Cornish is to be a fully Pythonic interface to the library. It doesn’t replace the existing starlink-pyast Python interface; rather, it is a wrapper around it. The current development focus is defining and working with regions and coordinate systems on the sky. It accepts and returns Astropy objects where possible. While care is taken to mimic the original API where it makes sense, the library places greater emphasis on making the API as Pythonic as possible and will rename methods where it will make operations and concepts more clear to the Python user.

Cornish is currently under active development and all APIs are subject to change. It is not recommended to be used in a pipeline yet, but it is becoming increasingly mature and particularly useful for interactive use. The project is being released in this state as it is a dependency of the Trillian and SciDD projects, also written by Demitri Muna.

Many thanks to David Berry for the generous and extremely responsive help and advice in the development of the library.

Examples

	Working With Regions
	All Regions

	Circles

	Polygons

	Boxes

	Compound Regions

	From FITS Files

	Plotting Examples
	Matplotlib Interface

	Other Interfaces

Cornish API

	Region APIs
	ASTRegion

	ASTBox

	ASTCircle

	ASTCompoundRegion

	ASTPolygon

	Mappings and Frames APIs
	ASTMapping

	ASTFrame

	ASTFrameSet

	ASTSkyFrame

	ASTICRSFrame

	ASTCompoundFrame

	Plotting APIs
	Matplotlib Interface

Indices and tables

	Index

	Module Index

	Search Page

Working With Regions

Starlink AST is primarily a library for working with world coordinate systems (WCS) for astronomical data. It has extensive functionality related to coordinate system translations, platting, and more. One of the primary tools of the library (and the initial focus of the Cornish Python interface) is the handling of regions. Regions can be Cartesian, e.g. a pixel grid on a CCD, or else in a celestial sphere frame, e.g. a region on an ASTSkyFrame. For the latter, all lines connecting vertices are great circles.

All region objects are all subclassed from ASTRegion. See the C library reference documentation [http://starlink.eao.hawaii.edu/devdocs/sun211.htx/sun211.html] for the full details of the objects. Region classes include:

	ASTCircle [C AST Reference [http://starlink.eao.hawaii.edu/devdocs/sun211.htx/sun211ss27.html]]

	ASTPolygon [C AST Reference [http://starlink.eao.hawaii.edu/devdocs/sun211.htx/sun211ss166.html]]

	ASTBox [C AST Reference [http://starlink.eao.hawaii.edu/devdocs/sun211.htx/sun211ss22.html]]

	ASTCompoundRegion [C AST Reference [http://starlink.eao.hawaii.edu/devdocs/sun211.htx/sun211ss35.html]]

When creating a region, note that the frame the region to be defined in must be specified. The class ASTICRSFrame is provided as a convenience, defined as sky frame in the ICRS system with epoch 2000.0 and equinox 2000.0. Note that regions default to the ASTICRSFrame if one is not provided.

Region objects are defined in the top level of the cornish namespace.

All Regions

The ASTRegion class is the superclass for all Cornish region objects. It contains a great deal of functionality. The API reference is a worth looking at to see what is available. A short listing:

	points: Return a list of points that describe the region. The shape is dependent on the type of region.

	boundingCircle(): Returns a new ASTCircle object that bounds the given region.

	overlaps(): Check whether two regions overlap.

	isIdenticalTo(): Check whether two regions are identical.

	isFullyWithin(): Check whether one region is fully within another.

	fullyEncloses(): Check whether one region is fully encloses another.

	boundaryPointMesh(): Returns an array of evenly distributed points that cover the boundary of the region.

	interiorPointMesh(): Returns an array of evenly distributed points that cover the surface of the region.

	containsPoint(): Determine whether a given point lies within a given region.

See the API reference for more methods and properties.

Circles

Creating Circles

Circles can be defined as either a center point and a radius or else a center point and another on the circumference. Coordinates can be specified an astropy.coodinates.SkyCoord object or pairs of values in degrees. The examples below demonstrate various ways to create circle regions.

from cornish import ASTCircle, ASTICRSFrame, ASTSkyFrame
from cornish.constants import SYSTEM_GALACTIC, EQUINOX_J2010
from astropy.coordinates import SkyCoord
import astropy.units as u

note that the default frame is ICRS, epoch=2000.0, equinox=2000.0

defined as center + radius

using Astropy objects
center = SkyCoord(ra="12d42m22s", dec="-32d18m58s")
circle = ASTCircle(center=center, radius=2.0*u.deg)

using float values, defaults to degrees
circle = ASTCircle(center=[12.7061, -31.6839], radius=2.0) # assumes degrees
circle = ASTCircle(center=[12.7061*u.deg, -31.6839*u.deg], radius=2.0*u.deg) # Quanitites also accepted

defined as center + circumference point

circle = ASTCircle(center=center, edge_point=[12.7061, -32.6839]) # edge_point also takes SkyCoord

define the circle in another frame

gal_frame = ASTSkyFrame(system=SYSTEM_GALACTIC)
gal_frame.equinox = EQUINOX_J2010
ASTCircle(frame=gal_frame, center=center, radius=2.0*u.deg)

Circle Properties

Circles have radius and centre properties as one might expect, and both can be directly modified:

circle.radius
>>> <Quantity 2. deg>

circle.centre # or "center" if you prefer...
>>> array([12.70611111, -32.31611111]) # output in degrees

New circles can be created by a scale factor or increased by addition from an existing circle.

scaled_circle = circle * 2.0
scaled_circle.radius
>>> <Quantity 4. deg>

larger_circle = circle + 6*u.deg
larger_circle.radius
>>> <Quantity 8. deg>

Converting to Polygons

For code that requires a polygon region as an input the method toPolygon() will convert a circle to an ASTPolygon. The default is to sample 200 points for the polygon but this can be customized by using the npoints parameter (often even 20 are sufficient). Note that all of the polygon points fall on the circle’s circumference, so the resulting region is fully inscribed by the original circle.

polygon = circle.toPolygon()
finer_polygon = circle(toPolygon(npoints=200))

All regions have a boundingCircle() property that returns an ASTCircle that bounds the region. In the case of ASTCircle objects, this method returns the original circle.

Polygons

A polygon is a collection of vertices that lie in a specific frame. The default frame ASTICRSFrame is used if none is specified.

from cornish import ASTPolygon, ASTICRSFrame
import numpy as np

points = np.array([[12.70611111, -30.31611111],
 [13.42262189, -30.41196836],
 [14.07300863, -30.69069244],
 [14.59623325, -31.12642801],
 [14.94134955, -31.67835614],
 [15.07227821, -32.29403528],
 [14.97204342, -32.91392471],
 [14.6459242 , -33.47688136],
 [14.12273328, -33.92626054],
 [13.4533703 , -34.21603194],
 [12.70611111, -34.31611111],
 [11.95885193, -34.21603194],
 [11.28948894, -33.92626054],
 [10.76629802, -33.47688136],
 [10.4401788 , -32.91392471],
 [10.33994401, -32.29403528],
 [10.47087267, -31.67835614],
 [10.81598897, -31.12642801],
 [11.3392136 , -30.69069244],
 [11.98960033, -30.41196836]])
polygon = ASTPolygon(frame=ASTICRSFrame(), points=points)

Points can be specified as an array of coordinate points (as above) or as parallel arrays of each dimension (which is just points.T from above):

points = np.array([[12.70611111, 13.42262189, 14.07300863, 14.59623325, ...],
 [-30.31611111, -30.41196836, -30.69069244, -31.12642801, ...]])

Todo

Provide example of how to convert a region from one frame to another.

Boxes

Todo

Box section coming soon! (But it’s pretty straightforward from the ASTBox API.)

Compound Regions

Todo

Compound regions section coming soon! (But it’s pretty straightforward from the ASTBox API.)

From FITS Files

Cornish is able to create regions based on image FITS headers alone. The example below shows how to create a region object based on the area covered by a FITS image from the header. The example file below can be downloaded here [https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/6174/2/frame-g-006174-2-0094.fits.bz2].

from cornish import ASTPolygon
from astropy.io import fits

filename = "frame-g-006174-2-0094.fits.bz2"
with fits.open(filename) as hdu_list:
 hdu1 = hdu_list[0]

polygon = ASTPolygon.fromFITSHeader(hdu1.header)

Plotting Examples

The underlying starlink-pyast [http://starlink.github.io/starlink-pyast/pyast.html] library has a rich functionality for handling plotting on multiple world coordinate systems. The interface is extensible and provides hooks for custom plot interfaces.

Plotting support in Cornish is not complete, but more than sufficient for checks like verifying regions.

Matplotlib Interface

starlink-pyast provides a wrapper for plotting with Matplotlib. Cornish goes further by creating routines that overlay these to interact with the Cornish objects in as simple a manner as possible. The primary interface is the SkyPlot object.

The following is a very simple example of how to plot a circle in an ICRS frame on the sky:

from cornish import ASTCircle
from cornish.plot.matplotlib import SkyPlot
import astropy.units as u
from astropy.coordinates import SkyCoord

define a circle in the ICRS frame (used by default)
center = SkyCoord(ra="12d42m22s", dec="-32d18m58s")
circle = ASTCircle(center=center, radius=2.0*u.deg)

define a new plot of 5x5 inches
set the extent of the plot to the size of a circle
with 1.25 x the circle radius to leave some room
skyplot = SkyPlot(extent=circle*1.25, figsize=(5,5))

add region to plot
skyplot.addRegionOutline(circle)

display
skyplot.show()

The result is:

[image: _images/circle_region_plot.png]
Repeat the same with a polygon converted from the circle.

from cornish import ASTCircle
from cornish.plot.matplotlib import SkyPlot
import astropy.units as u
from astropy.coordinates import SkyCoord

define a circle in the ICRS frame (used by default)
center = SkyCoord(ra="12d42m22s", dec="-32d18m58s")
circle = ASTCircle(center=center, radius=2.0*u.deg)

define a new plot of 5x5 inches
set the extent of the plot to the size of a circle
with 1.25 x the circle radius to leave some room
skyplot = SkyPlot(extent=circle*1.25, figsize=(5,5))

add region to plot
skyplot.addRegionOutline(circle)
skyplot.addRegionOutline(circle.toPolygon(npoints=8), color="#3b85f7")

display
skyplot.show()

The result is:

[image: _images/circle+polygon_region_plot.png]

Todo

Link to Trillian docs to demonstrate plotting via the Trillian API.

Other Interfaces

Currently only the Matplotlib interface is supported. More are planned.

Region APIs

Classes that describe regions are documented here.

ASTRegion

	
class cornish.ASTRegion(ast_object=None, uncertainty=None)

	Bases: cornish.mapping.frame.frame.ASTFrame

Represents a region within a coordinate system.
This is an abstract superclass - there is no supported means to create an ASTRegion object directly
(see ASTBox, ASTPolygon, etc.).

Accepted signatures for creating an ASTRegion:

r = ASTRegion(ast_object)

	Parameters

	
	ast_object (Optional[Region]) –

	uncertainty –

	
angle(vertex=None, points=None)

	Calculate the angle in this frame between two line segments connected by a point.

Let A = point1, C = point2, and B = the vertex point. This method calculates the
angle between the line segments AB and CB.

If the frame is a sky frame, lines are drawn on great circles.
Units are assumed to be degrees if not provided with units,
e.g. as an astropy.coordinates.SkyCoord or astropy.units.Quantity values.

	Parameters

	
	vertex (Optional[Iterable]) – a two element list/tuple/Numpy array or a SkyCoord of the vertex

	points (Optional[Container[Union[SkyCoord, Iterable]]]) – a two element list/tuple/etc. containing two points in this frame

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
abstract property area: astropy.units.quantity.Quantity

	
	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
boundaryPointMesh(npoints=None)

	Returns an array of evenly distributed points that cover the boundary of the region.
For example, if the region is a box, it will generate a list of points that trace the edges of the box.

The default value of ‘npoints’ is 200 for 2D regions and 2000 for three or more dimensions.

	Parameters

	npoints (Optional[int]) – the approximate number of points to generate in the mesh

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	list of points in degrees

	
boundingBox()

	Returns an ASTBox region that bounds this region where the box sides align with RA, dec.

	Return type

	ASTBox

	
boundingCircle()

	Returns the smallest circle (ASTCircle) that bounds this region.

It is up to the caller to know that this is a 2D region (only minimal checks are made).
:raises cornish.exc.NotA2DRegion: raised when attempting to get a bounding circle for a region that is not 2D

	Return type

	ASTCircle

	
property bounds: Tuple

	Returns lower and upper coordinate points that bound this region.

	Return type

	Tuple

	
containsPoint(point=None)

	Returns True if the provided point lies inside this region, False otherwise.

This method is a direct synonym for pointInRegion().
The name “containsPoint” is more appropriate from an object perspective,
but the pointInRegion method is present for consistency with the AST library.

	Parameters

	point (Union[Iterable, SkyCoord, None]) – a coordinate point in the same frame as this region

	Return type

	bool

	
distance(point1, point2)

	Distance between two points in this frame.

	Parameters

	
	point1 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the first point coordinates

	point2 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the second point coordinates

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property domain: str

	The physical domain of the coordinate system (string value).
The Domain attribute also controls how Frames align with each other.
If the Domain value in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Example values: GRID, FRACTION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS

Frames created by the user (for instance, using WCSADD) can have any Domain value, but the standard
domain names should be avoided unless the standard meanings are appropriate for the Frame being created.

	Return type

	str

	
property fillFactor

	<Fraction of the Region which is of interest>

	
frame()

	Returns a copy of the frame encapsulated by this region.

Note that the frame is not directly accessible; both this method and the underlying starlink-pyast function returns a copy.

	Return type

	ASTFrame

	
static frameFromAstObject(ast_object=None)

	Factory method that returns the appropriate Cornish frame object (e.g. ASTSkyFrame) for a given frame.

	Parameters

	ast_object (Optional[Frame]) – an Ast.Frame object

	
static frameFromFITSHeader(header)

	Factory method that returns a new ASTFrame from the provided FITS header.

	
frameSet()

	Returns a copy of the frameset encapsulated by this region.

From AST docs:

The base Frame is the Frame in which the box was originally
defined, and the current Frame is the Frame into which the
Region is currently mapped (i.e. it will be the same as the
Frame returned by astGetRegionFrame).

	Return type

	ASTFrameSet

	
framesetWithMappingTo(template_frame=None)

	Search this frame (or set) to identify a frame that shares the same coordinate system as the provided template frame.

For example, this method can be used to see if this frame
(or frame set) contains a sky frame.

Returns None if no mapping can be found.

	Parameters

	template_frame (Optional[ASTFrame]) – an instance of the type of frame
being searched for

	Return type

	Optional[ASTFrame]

	Returns

	a frame that matches the template

	
classmethod fromFITSHeader(fits_header=None, uncertainty=4.848e-06)

	Factory method to create a region from the provided FITS header; the returned object will be as specific as possible (but probably an ASTPolygon).

The frame is determined from the FITS header.

	Parameters

	
	fits_header – a FITS header (Astropy, fitsio, an array of cards)

	uncertainty (float) – defaults to 4.848e-6, an uncertainty of 1 arcsec

	
fullyEncloses(region)

	Returns ‘True’ if this region fully encloses the provided region.

	Return type

	bool

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
interiorPointMesh(npoints=None)

	Returns an array of evenly distributed points that cover the surface of the region.
For example, if the region is a box, it will generate a list of points that fill the interior area of the box.

The default value of ‘npoints’ is 200 for 2D regions and 2000 for three or more dimensions.

	Parameters

	npoints (Optional[int]) – the approximate number of points to generate in the mesh

	Returns

	array of points in degrees

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isAdaptive

	Boolean attribute that indicates whether the area adapt to changes in the coordinate system.

	
property isBounded: bool

	Boolean attribute that indicates whether the region is bounded.

	Return type

	bool

	
property isClosed: bool

	Boolean attribute that indicates whether the boundary be considered to be inside the region.

	Return type

	bool

	
isFullyWithin(region)

	Returns ‘True’ if this region is fully within the provided region.

	Return type

	bool

	
isIdenticalTo(region)

	Returns ‘True’ if this region is identical (to within their uncertainties) to the provided region, ‘False’ otherwise.

	Return type

	bool

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isNegated

	Boolean attribute that indicates whether the original region has been negated.

	
isNegationOf(region)

	Returns ‘True’ if this region is the exact negation of the provided region.

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property isSkyFrame: bool

	Returns True if this is a SkyFrame, False otherwise.

	Return type

	bool

	
label(axis=None)

	Return the label for the specified axis.

	Return type

	str

	
mapRegionMesh(mapping=None, frame=None)

	Returns a new ASTRegion that is the same as this one but with the specified coordinate system.

	Parameters

	
	mapping (~cornish.mapping.ASTMapping class) – The mapping to transform positions from the current ASTRegion to those specified by the given frame.

	frame (~cornish.frame.ASTFrame class) – Coordinate system frame to convert the current ASTRegion to.

	Returns

	region – A new region object covering the same area but in the frame specified in frame.

	Return type

	ASTRegion

	Raises

	Exception – An exception is raised for missing parameters.

	
maskOnto(image=None, mapping=None, fits_coordinates=True, lower_bounds=None, mask_inside=True, mask_value=nan)

	Apply this region as a mask on top of the provided image; note: the image values are overwritten!

	Parameters

	
	image – numpy.ndarray of pixel values (or other array of values)

	mapping – mapping from this region to the pixel coordinates of the provided image

	fits_coordinates (bool) – use the pixel coordinates of a FITS file (i.e. origin = [0.5, 0.5] for 2D)

	lower_bounds – lower bounds of provided image, only specify if not using FITS coordinates

	mask_inside – True: mask the inside of this region; False: mask outside of this region

	mask_value – the value to set the masked image pixels to

	Returns

	number of pixels in image masked

	
property meshSize: int

	Number of points used to create a mesh covering the region.

	Return type

	int

	
property naxes: int

	Returns the number of axes for the frame.

	Return type

	int

	
negate()

	Negate the region, i.e. points inside the region will be outside, and vice versa.

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
offsetAlongGeodesicCurve(point1, point2, offset)

	Coordinates and offset value should be in the units of the frame, e.g. pixels, degrees.

In a sky frame, the line will be curved. In a basic frame, the line will be straight.

	Parameters

	
	point1 (Iterable) – a two element list/tuple/NumPy array of the first point coordinates

	point2 (Iterable) – a two element list/tuple/NumPy array of the second point coordinates

	offset (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – a distance along the geodesic sphere connecting the two points

	
overlaps(region)

	Return True if this region overlaps with the provided one.

	Return type

	bool

	
pointInRegion(point)

	Returns True if the provided point lies inside this region, False otherwise.

If no units are specified degrees are assumed.

	Parameters

	point (Union[Iterable, SkyCoord, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – a coordinate point in the same frame as this region

	Return type

	bool

	
property points: numpy.ndarray

	The array of points that define the region. The interpretation of the points is dependent on the type of shape in question.

Box: returns two points; the center and a box corner.
Circle: returns two points; the center and a point on the circumference.
CmpRegion: no points returned; to get points that define a compound region, call this method on each of the component regions via the method “decompose”.
Ellipse: three points: 1) center, 2) end of one axis, 3) end of the other axis
Interval: two points: 1) lower bounds position, 2) upper bounds position (reversed when interval is an excluded interval)
NullRegion: no points
PointList: positions that the list was constructed with
Polygon: vertex positions used to construct the polygon
Prism: no points (see CmpRegion)

NOTE: points returned reflect the current coordinate system and may be different from the initial construction

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	NumPy array of coordinate points in degrees, shape (ncoord,2), e.g. [[ra1,dec1], [ra2, dec2], …, [ra_n, dec_n]]

	
regionWithMapping(map=None, frame=None)

	Returns a new ASTRegion with the coordinate system from the supplied frame.

Corresponds to the astMapRegion C function (starlink.Ast.mapregion).

	Parameters

	
	map – A mapping that can convert coordinates from the system of the current region to that of the supplied frame.

	frame – A frame containing the coordinate system for the new region.

	Return type

	ASTRegion

	Returns

	new ASTRegion with a new coordinate system

	
setLabelForAxis(label=None)

	Set the label for the specified axis.

	
setUnitForAxis(axis=None, unit=None)

	Set the unit as a string value for the specified axis.

	
property system

	String which identifies the coordinate system represented by the Frame.
The system is Cartesian by default, but can have other values for subclasses of Frame,
e.g. FK4, Galactic.

	
property title: str

	Returns the frame title, a string describing the coordinate system which the frame represents.

	Return type

	str

	
abstract toPolygon(npoints=200, maxerr=<Quantity 1. arcsec>)

	Method that guarantees returning a polygon that describes or approximates this region.

This method provides a common interface to create polygons from different region types.
Calling this on an ASTPolygon will return itself; calling it on an ASTCircle
will return a polygon that approximates the circle. The parameters ‘npoints’ and
‘maxerr’ will be used only when appropriate.

	Parameters

	
	npoints – number of points to sample from the region’s boundary for the resulting polygon

	maxerr (astropy.units.Quantity [https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) –

	Return type

	ASTPolygon

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property uncertainty

	Uncertainties associated with the boundary of the Box.

The uncertainty in any point on the boundary of the Box is found by
shifting the supplied “uncertainty” Region so that it is centered at
the boundary point being considered. The area covered by the shifted
uncertainty Region then represents the uncertainty in the boundary
position. The uncertainty is assumed to be the same for all points.

	
unit(axis=None)

	Return the unit for the specified axis.

ASTBox

	
class cornish.ASTBox(ast_object=None)

	Bases: cornish.region.region.ASTRegion

ASTBox is an ASTRegion that represents a box with sides parallel to the axes of an ASTFrame.

Accepted signatures for creating an ASTBox:

b = ASTBox(frame, cornerPoint, cornerPoint2)
b = ASTBox(frame, cornerPoint, centerPoint)
b = ASTBox(frame, dimensions)
b = ASTBox(ast_box) (where ast_box is an Ast.Box object)

Points and dimensions can be any two element container, e.g.

(1,2)
[1,2]
np.array([1,2])

If dimensions is specified, a box enclosing the entire area will be defined.

The ‘frame’ parameter may either be an ASTFrame object or a starlink.Ast.frame object.

A Box is similar to an Interval, the only real difference being that the Interval
class allows some axis limits to be unspecified. Note, a Box will only look like a box
if the Frame geometry is approximately flat. For instance, a Box centered close to a pole
in a SkyFrame will look more like a fan than a box (the Polygon class can be used to
create a box-like region close to a pole).

	Parameters

	
	ast_box – an existing object of type starlink.Ast.Box

	frame – a frame the box is to be defined in, uses ASTICRSFrame if None

	cornerPoint –

	cornerPoint2 –

	centerPoint –

	dimensions – dimensions of the box in pixels for use on a Cartesian frame (AST frame=’Cartesian’ and system=’GRID’)

	
angle(vertex=None, points=None)

	Calculate the angle in this frame between two line segments connected by a point.

Let A = point1, C = point2, and B = the vertex point. This method calculates the
angle between the line segments AB and CB.

If the frame is a sky frame, lines are drawn on great circles.
Units are assumed to be degrees if not provided with units,
e.g. as an astropy.coordinates.SkyCoord or astropy.units.Quantity values.

	Parameters

	
	vertex (Optional[Iterable]) – a two element list/tuple/Numpy array or a SkyCoord of the vertex

	points (Optional[Container[Union[SkyCoord, Iterable]]]) – a two element list/tuple/etc. containing two points in this frame

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property area: astropy.units.quantity.Quantity

	The area of the box within its frame (e.g. on a Cartesian plane or sphere). [Not yet implemented.]

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
boundaryPointMesh(npoints=None)

	Returns an array of evenly distributed points that cover the boundary of the region.
For example, if the region is a box, it will generate a list of points that trace the edges of the box.

The default value of ‘npoints’ is 200 for 2D regions and 2000 for three or more dimensions.

	Parameters

	npoints (Optional[int]) – the approximate number of points to generate in the mesh

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	list of points in degrees

	
boundingBox()

	Returns an ASTBox region that bounds this region where the box sides align with RA, dec.

	Return type

	ASTBox

	
boundingCircle()

	Returns the smallest circle (ASTCircle) that bounds this region.

It is up to the caller to know that this is a 2D region (only minimal checks are made).
:raises cornish.exc.NotA2DRegion: raised when attempting to get a bounding circle for a region that is not 2D

	Return type

	ASTCircle

	
property bounds: Tuple

	Returns lower and upper coordinate points that bound this region.

	Return type

	Tuple

	
property center: numpy.ndarray

	Returns “self.centre”. This is a British library, after all.

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property centre: numpy.ndarray

	Returns the location of the Box’s center as a coordinate pair, in degrees if a sky frame.

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	a Numpy array of points (axis1, axis2)

	
containsPoint(point=None)

	Returns True if the provided point lies inside this region, False otherwise.

This method is a direct synonym for pointInRegion().
The name “containsPoint” is more appropriate from an object perspective,
but the pointInRegion method is present for consistency with the AST library.

	Parameters

	point (Union[Iterable, SkyCoord, None]) – a coordinate point in the same frame as this region

	Return type

	bool

	
property corner: numpy.ndarray

	Returns the location of one of the box’s corners as a coordinate pair, in degrees if a sky frame.

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	a Numpy array of points (axis1, axis2)

	
corners(mapping=None)

	Returns a list of all four corners of box.

	Parameters

	mapping (ASTMapping) – A mapping object.

	Returns

	A list of points in degrees, e.g. [(p1,p2), (p3, p4), (p5, p6), (p7, p8)]

	Return type

	list

	
distance(point1, point2)

	Distance between two points in this frame.

	Parameters

	
	point1 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the first point coordinates

	point2 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the second point coordinates

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property domain: str

	The physical domain of the coordinate system (string value).
The Domain attribute also controls how Frames align with each other.
If the Domain value in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Example values: GRID, FRACTION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS

Frames created by the user (for instance, using WCSADD) can have any Domain value, but the standard
domain names should be avoided unless the standard meanings are appropriate for the Frame being created.

	Return type

	str

	
property fillFactor

	<Fraction of the Region which is of interest>

	
frame()

	Returns a copy of the frame encapsulated by this region.

Note that the frame is not directly accessible; both this method and the underlying starlink-pyast function returns a copy.

	Return type

	ASTFrame

	
static frameFromAstObject(ast_object=None)

	Factory method that returns the appropriate Cornish frame object (e.g. ASTSkyFrame) for a given frame.

	Parameters

	ast_object (Optional[Frame]) – an Ast.Frame object

	
static frameFromFITSHeader(header)

	Factory method that returns a new ASTFrame from the provided FITS header.

	
frameSet()

	Returns a copy of the frameset encapsulated by this region.

From AST docs:

The base Frame is the Frame in which the box was originally
defined, and the current Frame is the Frame into which the
Region is currently mapped (i.e. it will be the same as the
Frame returned by astGetRegionFrame).

	Return type

	ASTFrameSet

	
framesetWithMappingTo(template_frame=None)

	Search this frame (or set) to identify a frame that shares the same coordinate system as the provided template frame.

For example, this method can be used to see if this frame
(or frame set) contains a sky frame.

Returns None if no mapping can be found.

	Parameters

	template_frame (Optional[ASTFrame]) – an instance of the type of frame
being searched for

	Return type

	Optional[ASTFrame]

	Returns

	a frame that matches the template

	
classmethod fromCentreAndCorner(frame, centre=None, corner=None, center=None, uncertainty=None)

	Create a new ASTBox object defined by the provided corner and centre points.

	Parameters

	
	frame (Union[Frame, ASTFrame]) – the frame the provided points lie in, accepts either ASTFrame or starlink.Ast.Frame objects

	centre (Optional[Iterable]) – the coordinate of the point at the centre of the box in the frame provided

	corner (Optional[Iterable]) – the coordinate of the point at any corner of the box in the frame provided

	center (Optional[Iterable]) – synonym for ‘centre’, ignored if ‘centre’ is defined

	uncertainty (Union[ASTRegion, Region, None]) –

	Return type

	ASTBox

	
classmethod fromCorners(frame, corners=None, uncertainty=None)

	Create a new ASTBox object defined by two corner points.

	Parameters

	
	frame (Union[Frame, ASTFrame]) – the frame the provided points lie in, accepts either ASTFrame or starlink.Ast.Frame objects

	corners (Optional[Iterable[Iterable]]) – a collection (list, tuple, array, etc.) of coordinates of two corners of the box in the frame provided

	uncertainty (Union[ASTRegion, Region, None]) –

	Return type

	ASTBox

	
classmethod fromFITSHeader(fits_header=None, uncertainty=4.848e-06)

	Factory method to create a region from the provided FITS header; the returned object will be as specific as possible (but probably an ASTPolygon).

The frame is determined from the FITS header.

	Parameters

	
	fits_header – a FITS header (Astropy, fitsio, an array of cards)

	uncertainty (float) – defaults to 4.848e-6, an uncertainty of 1 arcsec

	
fullyEncloses(region)

	Returns ‘True’ if this region fully encloses the provided region.

	Return type

	bool

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
interiorPointMesh(npoints=None)

	Returns an array of evenly distributed points that cover the surface of the region.
For example, if the region is a box, it will generate a list of points that fill the interior area of the box.

The default value of ‘npoints’ is 200 for 2D regions and 2000 for three or more dimensions.

	Parameters

	npoints (Optional[int]) – the approximate number of points to generate in the mesh

	Returns

	array of points in degrees

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isAdaptive

	Boolean attribute that indicates whether the area adapt to changes in the coordinate system.

	
property isBounded: bool

	Boolean attribute that indicates whether the region is bounded.

	Return type

	bool

	
property isClosed: bool

	Boolean attribute that indicates whether the boundary be considered to be inside the region.

	Return type

	bool

	
isFullyWithin(region)

	Returns ‘True’ if this region is fully within the provided region.

	Return type

	bool

	
isIdenticalTo(region)

	Returns ‘True’ if this region is identical (to within their uncertainties) to the provided region, ‘False’ otherwise.

	Return type

	bool

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isNegated

	Boolean attribute that indicates whether the original region has been negated.

	
isNegationOf(region)

	Returns ‘True’ if this region is the exact negation of the provided region.

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property isSkyFrame: bool

	Returns True if this is a SkyFrame, False otherwise.

	Return type

	bool

	
label(axis=None)

	Return the label for the specified axis.

	Return type

	str

	
mapRegionMesh(mapping=None, frame=None)

	Returns a new ASTRegion that is the same as this one but with the specified coordinate system.

	Parameters

	
	mapping (~cornish.mapping.ASTMapping class) – The mapping to transform positions from the current ASTRegion to those specified by the given frame.

	frame (~cornish.frame.ASTFrame class) – Coordinate system frame to convert the current ASTRegion to.

	Returns

	region – A new region object covering the same area but in the frame specified in frame.

	Return type

	ASTRegion

	Raises

	Exception – An exception is raised for missing parameters.

	
maskOnto(image=None, mapping=None, fits_coordinates=True, lower_bounds=None, mask_inside=True, mask_value=nan)

	Apply this region as a mask on top of the provided image; note: the image values are overwritten!

	Parameters

	
	image – numpy.ndarray of pixel values (or other array of values)

	mapping – mapping from this region to the pixel coordinates of the provided image

	fits_coordinates (bool) – use the pixel coordinates of a FITS file (i.e. origin = [0.5, 0.5] for 2D)

	lower_bounds – lower bounds of provided image, only specify if not using FITS coordinates

	mask_inside – True: mask the inside of this region; False: mask outside of this region

	mask_value – the value to set the masked image pixels to

	Returns

	number of pixels in image masked

	
property meshSize: int

	Number of points used to create a mesh covering the region.

	Return type

	int

	
property naxes: int

	Returns the number of axes for the frame.

	Return type

	int

	
negate()

	Negate the region, i.e. points inside the region will be outside, and vice versa.

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
offsetAlongGeodesicCurve(point1, point2, offset)

	Coordinates and offset value should be in the units of the frame, e.g. pixels, degrees.

In a sky frame, the line will be curved. In a basic frame, the line will be straight.

	Parameters

	
	point1 (Iterable) – a two element list/tuple/NumPy array of the first point coordinates

	point2 (Iterable) – a two element list/tuple/NumPy array of the second point coordinates

	offset (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – a distance along the geodesic sphere connecting the two points

	
overlaps(region)

	Return True if this region overlaps with the provided one.

	Return type

	bool

	
pointInRegion(point)

	Returns True if the provided point lies inside this region, False otherwise.

If no units are specified degrees are assumed.

	Parameters

	point (Union[Iterable, SkyCoord, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – a coordinate point in the same frame as this region

	Return type

	bool

	
property points: numpy.ndarray

	The array of points that define the region. The interpretation of the points is dependent on the type of shape in question.

Box: returns two points; the center and a box corner.
Circle: returns two points; the center and a point on the circumference.
CmpRegion: no points returned; to get points that define a compound region, call this method on each of the component regions via the method “decompose”.
Ellipse: three points: 1) center, 2) end of one axis, 3) end of the other axis
Interval: two points: 1) lower bounds position, 2) upper bounds position (reversed when interval is an excluded interval)
NullRegion: no points
PointList: positions that the list was constructed with
Polygon: vertex positions used to construct the polygon
Prism: no points (see CmpRegion)

NOTE: points returned reflect the current coordinate system and may be different from the initial construction

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	NumPy array of coordinate points in degrees, shape (ncoord,2), e.g. [[ra1,dec1], [ra2, dec2], …, [ra_n, dec_n]]

	
regionWithMapping(map=None, frame=None)

	Returns a new ASTRegion with the coordinate system from the supplied frame.

Corresponds to the astMapRegion C function (starlink.Ast.mapregion).

	Parameters

	
	map – A mapping that can convert coordinates from the system of the current region to that of the supplied frame.

	frame – A frame containing the coordinate system for the new region.

	Return type

	ASTRegion

	Returns

	new ASTRegion with a new coordinate system

	
setLabelForAxis(label=None)

	Set the label for the specified axis.

	
setUnitForAxis(axis=None, unit=None)

	Set the unit as a string value for the specified axis.

	
property system

	String which identifies the coordinate system represented by the Frame.
The system is Cartesian by default, but can have other values for subclasses of Frame,
e.g. FK4, Galactic.

	
property title: str

	Returns the frame title, a string describing the coordinate system which the frame represents.

	Return type

	str

	
toPolygon(npoints=200, maxerr=<Quantity 1. arcsec>)

	Returns a four-vertex ASTPolygon that describes this box in the same frame.

The parameters ‘npoints’ and ‘maxerr’ are ignored.

	Return type

	ASTPolygon

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property uncertainty

	Uncertainties associated with the boundary of the Box.

The uncertainty in any point on the boundary of the Box is found by
shifting the supplied “uncertainty” Region so that it is centered at
the boundary point being considered. The area covered by the shifted
uncertainty Region then represents the uncertainty in the boundary
position. The uncertainty is assumed to be the same for all points.

	
unit(axis=None)

	Return the unit for the specified axis.

ASTCircle

	
class cornish.ASTCircle(ast_object=None, frame=None, center=None, edge_point=None, radius=None)

	Bases: cornish.region.region.ASTRegion

ASTCircle is an ASTRegion that represents a circle.

Accepted signatures for creating an ASTCircle

	Parameters

	
	ast_object – a circle object from the starlink-pyast module

	frame – a frame the circle is to be defined in, uses ASTICRSFrame if None

	center – two elements that describe the center point of the circle in the provided frame in degrees

	edge_point – two elements that describe a point on the circumference of the circle in the provided frame in degrees

	radius – radius of the circle in degrees

	
angle(vertex=None, points=None)

	Calculate the angle in this frame between two line segments connected by a point.

Let A = point1, C = point2, and B = the vertex point. This method calculates the
angle between the line segments AB and CB.

If the frame is a sky frame, lines are drawn on great circles.
Units are assumed to be degrees if not provided with units,
e.g. as an astropy.coordinates.SkyCoord or astropy.units.Quantity values.

	Parameters

	
	vertex (Optional[Iterable]) – a two element list/tuple/Numpy array or a SkyCoord of the vertex

	points (Optional[Container[Union[SkyCoord, Iterable]]]) – a two element list/tuple/etc. containing two points in this frame

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property area

	The area of the circle within its frame (e.g. on a Cartesian plane or sphere). [Not yet implemented.]

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
boundaryPointMesh(npoints=None)

	Returns an array of evenly distributed points that cover the boundary of the region.
For example, if the region is a box, it will generate a list of points that trace the edges of the box.

The default value of ‘npoints’ is 200 for 2D regions and 2000 for three or more dimensions.

	Parameters

	npoints (Optional[int]) – the approximate number of points to generate in the mesh

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	list of points in degrees

	
boundingBox()

	Returns an ASTBox region that bounds this region where the box sides align with RA, dec.

	Return type

	ASTBox

	
boundingCircle()

	This method returns itself; a circle region is its own bounding circle.

	Return type

	ASTCircle

	
property bounds: Tuple

	Returns lower and upper coordinate points that bound this region.

	Return type

	Tuple

	
property center

	The center of this circle region in degrees (a synonym for self.centre()” for the Americans).

	Returns

	

	Return type

	returns: a list of points [x,y] that describe the centre of the circle in degrees

	
property centre

	The centre of this circle region in degrees.

	Returns

	

	Return type

	returns: a list of points [x,y] that describe the centre of the circle in degrees

	
containsPoint(point=None)

	Returns True if the provided point lies inside this region, False otherwise.

This method is a direct synonym for pointInRegion().
The name “containsPoint” is more appropriate from an object perspective,
but the pointInRegion method is present for consistency with the AST library.

	Parameters

	point (Union[Iterable, SkyCoord, None]) – a coordinate point in the same frame as this region

	Return type

	bool

	
distance(point1, point2)

	Distance between two points in this frame.

	Parameters

	
	point1 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the first point coordinates

	point2 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the second point coordinates

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property domain: str

	The physical domain of the coordinate system (string value).
The Domain attribute also controls how Frames align with each other.
If the Domain value in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Example values: GRID, FRACTION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS

Frames created by the user (for instance, using WCSADD) can have any Domain value, but the standard
domain names should be avoided unless the standard meanings are appropriate for the Frame being created.

	Return type

	str

	
property fillFactor

	<Fraction of the Region which is of interest>

	
frame()

	Returns a copy of the frame encapsulated by this region.

Note that the frame is not directly accessible; both this method and the underlying starlink-pyast function returns a copy.

	Return type

	ASTFrame

	
static frameFromAstObject(ast_object=None)

	Factory method that returns the appropriate Cornish frame object (e.g. ASTSkyFrame) for a given frame.

	Parameters

	ast_object (Optional[Frame]) – an Ast.Frame object

	
static frameFromFITSHeader(header)

	Factory method that returns a new ASTFrame from the provided FITS header.

	
frameSet()

	Returns a copy of the frameset encapsulated by this region.

From AST docs:

The base Frame is the Frame in which the box was originally
defined, and the current Frame is the Frame into which the
Region is currently mapped (i.e. it will be the same as the
Frame returned by astGetRegionFrame).

	Return type

	ASTFrameSet

	
framesetWithMappingTo(template_frame=None)

	Search this frame (or set) to identify a frame that shares the same coordinate system as the provided template frame.

For example, this method can be used to see if this frame
(or frame set) contains a sky frame.

Returns None if no mapping can be found.

	Parameters

	template_frame (Optional[ASTFrame]) – an instance of the type of frame
being searched for

	Return type

	Optional[ASTFrame]

	Returns

	a frame that matches the template

	
classmethod fromFITSHeader(fits_header=None, uncertainty=4.848e-06)

	Factory method to create a region from the provided FITS header; the returned object will be as specific as possible (but probably an ASTPolygon).

The frame is determined from the FITS header.

	Parameters

	
	fits_header – a FITS header (Astropy, fitsio, an array of cards)

	uncertainty (float) – defaults to 4.848e-6, an uncertainty of 1 arcsec

	
fullyEncloses(region)

	Returns ‘True’ if this region fully encloses the provided region.

	Return type

	bool

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
interiorPointMesh(npoints=None)

	Returns an array of evenly distributed points that cover the surface of the region.
For example, if the region is a box, it will generate a list of points that fill the interior area of the box.

The default value of ‘npoints’ is 200 for 2D regions and 2000 for three or more dimensions.

	Parameters

	npoints (Optional[int]) – the approximate number of points to generate in the mesh

	Returns

	array of points in degrees

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isAdaptive

	Boolean attribute that indicates whether the area adapt to changes in the coordinate system.

	
property isBounded: bool

	Boolean attribute that indicates whether the region is bounded.

	Return type

	bool

	
property isClosed: bool

	Boolean attribute that indicates whether the boundary be considered to be inside the region.

	Return type

	bool

	
isFullyWithin(region)

	Returns ‘True’ if this region is fully within the provided region.

	Return type

	bool

	
isIdenticalTo(region)

	Returns ‘True’ if this region is identical (to within their uncertainties) to the provided region, ‘False’ otherwise.

	Return type

	bool

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isNegated

	Boolean attribute that indicates whether the original region has been negated.

	
isNegationOf(region)

	Returns ‘True’ if this region is the exact negation of the provided region.

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property isSkyFrame: bool

	Returns True if this is a SkyFrame, False otherwise.

	Return type

	bool

	
label(axis=None)

	Return the label for the specified axis.

	Return type

	str

	
mapRegionMesh(mapping=None, frame=None)

	Returns a new ASTRegion that is the same as this one but with the specified coordinate system.

	Parameters

	
	mapping (~cornish.mapping.ASTMapping class) – The mapping to transform positions from the current ASTRegion to those specified by the given frame.

	frame (~cornish.frame.ASTFrame class) – Coordinate system frame to convert the current ASTRegion to.

	Returns

	region – A new region object covering the same area but in the frame specified in frame.

	Return type

	ASTRegion

	Raises

	Exception – An exception is raised for missing parameters.

	
maskOnto(image=None, mapping=None, fits_coordinates=True, lower_bounds=None, mask_inside=True, mask_value=nan)

	Apply this region as a mask on top of the provided image; note: the image values are overwritten!

	Parameters

	
	image – numpy.ndarray of pixel values (or other array of values)

	mapping – mapping from this region to the pixel coordinates of the provided image

	fits_coordinates (bool) – use the pixel coordinates of a FITS file (i.e. origin = [0.5, 0.5] for 2D)

	lower_bounds – lower bounds of provided image, only specify if not using FITS coordinates

	mask_inside – True: mask the inside of this region; False: mask outside of this region

	mask_value – the value to set the masked image pixels to

	Returns

	number of pixels in image masked

	
property meshSize: int

	Number of points used to create a mesh covering the region.

	Return type

	int

	
property naxes: int

	Returns the number of axes for the frame.

	Return type

	int

	
negate()

	Negate the region, i.e. points inside the region will be outside, and vice versa.

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
offsetAlongGeodesicCurve(point1, point2, offset)

	Coordinates and offset value should be in the units of the frame, e.g. pixels, degrees.

In a sky frame, the line will be curved. In a basic frame, the line will be straight.

	Parameters

	
	point1 (Iterable) – a two element list/tuple/NumPy array of the first point coordinates

	point2 (Iterable) – a two element list/tuple/NumPy array of the second point coordinates

	offset (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – a distance along the geodesic sphere connecting the two points

	
overlaps(region)

	Return True if this region overlaps with the provided one.

	Return type

	bool

	
pointInRegion(point)

	Returns True if the provided point lies inside this region, False otherwise.

If no units are specified degrees are assumed.

	Parameters

	point (Union[Iterable, SkyCoord, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – a coordinate point in the same frame as this region

	Return type

	bool

	
property points: numpy.ndarray

	The array of points that define the region. The interpretation of the points is dependent on the type of shape in question.

Box: returns two points; the center and a box corner.
Circle: returns two points; the center and a point on the circumference.
CmpRegion: no points returned; to get points that define a compound region, call this method on each of the component regions via the method “decompose”.
Ellipse: three points: 1) center, 2) end of one axis, 3) end of the other axis
Interval: two points: 1) lower bounds position, 2) upper bounds position (reversed when interval is an excluded interval)
NullRegion: no points
PointList: positions that the list was constructed with
Polygon: vertex positions used to construct the polygon
Prism: no points (see CmpRegion)

NOTE: points returned reflect the current coordinate system and may be different from the initial construction

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	NumPy array of coordinate points in degrees, shape (ncoord,2), e.g. [[ra1,dec1], [ra2, dec2], …, [ra_n, dec_n]]

	
property radius: astropy.units.quantity.Quantity

	The radius of this circle region in degrees.

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	Returns

	The radius as a geodesic distance in the associated coordinate system as an astropy.units.Quantity [https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity] object in degrees.

	
regionWithMapping(map=None, frame=None)

	Returns a new ASTRegion with the coordinate system from the supplied frame.

Corresponds to the astMapRegion C function (starlink.Ast.mapregion).

	Parameters

	
	map – A mapping that can convert coordinates from the system of the current region to that of the supplied frame.

	frame – A frame containing the coordinate system for the new region.

	Return type

	ASTRegion

	Returns

	new ASTRegion with a new coordinate system

	
setLabelForAxis(label=None)

	Set the label for the specified axis.

	
setUnitForAxis(axis=None, unit=None)

	Set the unit as a string value for the specified axis.

	
property system

	String which identifies the coordinate system represented by the Frame.
The system is Cartesian by default, but can have other values for subclasses of Frame,
e.g. FK4, Galactic.

	
property title: str

	Returns the frame title, a string describing the coordinate system which the frame represents.

	Return type

	str

	
toPolygon(npoints=200, maxerr=<Quantity 1. arcsec>)

	Returns a new polygon region that approximates this circle in the same frame.

The algorithm used in this method leads to the new polygon being fully inscribed by the
originating circle; all points generated are on the circle’s circumference. Although the
default number of points is 200, typically a much smaller number (e.g. 20) is
sufficient.

	Parameters

	
	npoints – number of points to sample from the circle for the resulting polygon

	maxerr (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) –

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property uncertainty

	Uncertainties associated with the boundary of the Box.

The uncertainty in any point on the boundary of the Box is found by
shifting the supplied “uncertainty” Region so that it is centered at
the boundary point being considered. The area covered by the shifted
uncertainty Region then represents the uncertainty in the boundary
position. The uncertainty is assumed to be the same for all points.

	
unit(axis=None)

	Return the unit for the specified axis.

ASTCompoundRegion

	
class cornish.ASTCompoundRegion(ast_object=None, regions=None, operation=None)

	Bases: cornish.region.region.ASTRegion

A region that is created as the composite of multiple regions.

Regions are composited two at a time in the order they are supplied,
e.g. if regions=[r1, r2, r3, r4]
the result would be

region = compound(compound(compound(r1, r2), r3) r4)

all using the same operator as specified.

	Parameters

	
	regions (Optional[Iterable[Union[ASTRegion, Region]]]) – a list of regions to compound

	operation (Optional[int]) – one of starlink.Ast.AND, `starlink.Ast.OR, starlink.Ast.XOR

	
angle(vertex=None, points=None)

	Calculate the angle in this frame between two line segments connected by a point.

Let A = point1, C = point2, and B = the vertex point. This method calculates the
angle between the line segments AB and CB.

If the frame is a sky frame, lines are drawn on great circles.
Units are assumed to be degrees if not provided with units,
e.g. as an astropy.coordinates.SkyCoord or astropy.units.Quantity values.

	Parameters

	
	vertex (Optional[Iterable]) – a two element list/tuple/Numpy array or a SkyCoord of the vertex

	points (Optional[Container[Union[SkyCoord, Iterable]]]) – a two element list/tuple/etc. containing two points in this frame

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property area

	The area of the compound region on the sphere. [Not yet implemented.]

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
boundaryPointMesh(npoints=None)

	Returns an array of evenly distributed points that cover the boundary of the region.
For example, if the region is a box, it will generate a list of points that trace the edges of the box.

The default value of ‘npoints’ is 200 for 2D regions and 2000 for three or more dimensions.

	Parameters

	npoints (Optional[int]) – the approximate number of points to generate in the mesh

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	list of points in degrees

	
boundingBox()

	Returns an ASTBox region that bounds this region where the box sides align with RA, dec.

	Return type

	ASTBox

	
boundingCircle()

	Returns the smallest circle (ASTCircle) that bounds this region.

It is up to the caller to know that this is a 2D region (only minimal checks are made).
:raises cornish.exc.NotA2DRegion: raised when attempting to get a bounding circle for a region that is not 2D

	Return type

	ASTCircle

	
property bounds: Tuple

	Returns lower and upper coordinate points that bound this region.

	Return type

	Tuple

	
containsPoint(point=None)

	Returns True if the provided point lies inside this region, False otherwise.

This method is a direct synonym for pointInRegion().
The name “containsPoint” is more appropriate from an object perspective,
but the pointInRegion method is present for consistency with the AST library.

	Parameters

	point (Union[Iterable, SkyCoord, None]) – a coordinate point in the same frame as this region

	Return type

	bool

	
distance(point1, point2)

	Distance between two points in this frame.

	Parameters

	
	point1 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the first point coordinates

	point2 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the second point coordinates

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property domain: str

	The physical domain of the coordinate system (string value).
The Domain attribute also controls how Frames align with each other.
If the Domain value in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Example values: GRID, FRACTION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS

Frames created by the user (for instance, using WCSADD) can have any Domain value, but the standard
domain names should be avoided unless the standard meanings are appropriate for the Frame being created.

	Return type

	str

	
property fillFactor

	<Fraction of the Region which is of interest>

	
frame()

	Returns a copy of the frame encapsulated by this region.

Note that the frame is not directly accessible; both this method and the underlying starlink-pyast function returns a copy.

	Return type

	ASTFrame

	
static frameFromAstObject(ast_object=None)

	Factory method that returns the appropriate Cornish frame object (e.g. ASTSkyFrame) for a given frame.

	Parameters

	ast_object (Optional[Frame]) – an Ast.Frame object

	
static frameFromFITSHeader(header)

	Factory method that returns a new ASTFrame from the provided FITS header.

	
frameSet()

	Returns a copy of the frameset encapsulated by this region.

From AST docs:

The base Frame is the Frame in which the box was originally
defined, and the current Frame is the Frame into which the
Region is currently mapped (i.e. it will be the same as the
Frame returned by astGetRegionFrame).

	Return type

	ASTFrameSet

	
framesetWithMappingTo(template_frame=None)

	Search this frame (or set) to identify a frame that shares the same coordinate system as the provided template frame.

For example, this method can be used to see if this frame
(or frame set) contains a sky frame.

Returns None if no mapping can be found.

	Parameters

	template_frame (Optional[ASTFrame]) – an instance of the type of frame
being searched for

	Return type

	Optional[ASTFrame]

	Returns

	a frame that matches the template

	
classmethod fromFITSHeader(fits_header=None, uncertainty=4.848e-06)

	Factory method to create a region from the provided FITS header; the returned object will be as specific as possible (but probably an ASTPolygon).

The frame is determined from the FITS header.

	Parameters

	
	fits_header – a FITS header (Astropy, fitsio, an array of cards)

	uncertainty (float) – defaults to 4.848e-6, an uncertainty of 1 arcsec

	
fullyEncloses(region)

	Returns ‘True’ if this region fully encloses the provided region.

	Return type

	bool

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
interiorPointMesh(npoints=None)

	Returns an array of evenly distributed points that cover the surface of the region.
For example, if the region is a box, it will generate a list of points that fill the interior area of the box.

The default value of ‘npoints’ is 200 for 2D regions and 2000 for three or more dimensions.

	Parameters

	npoints (Optional[int]) – the approximate number of points to generate in the mesh

	Returns

	array of points in degrees

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isAdaptive

	Boolean attribute that indicates whether the area adapt to changes in the coordinate system.

	
property isBounded: bool

	Boolean attribute that indicates whether the region is bounded.

	Return type

	bool

	
property isClosed: bool

	Boolean attribute that indicates whether the boundary be considered to be inside the region.

	Return type

	bool

	
isFullyWithin(region)

	Returns ‘True’ if this region is fully within the provided region.

	Return type

	bool

	
isIdenticalTo(region)

	Returns ‘True’ if this region is identical (to within their uncertainties) to the provided region, ‘False’ otherwise.

	Return type

	bool

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isNegated

	Boolean attribute that indicates whether the original region has been negated.

	
isNegationOf(region)

	Returns ‘True’ if this region is the exact negation of the provided region.

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property isSkyFrame: bool

	Returns True if this is a SkyFrame, False otherwise.

	Return type

	bool

	
label(axis=None)

	Return the label for the specified axis.

	Return type

	str

	
mapRegionMesh(mapping=None, frame=None)

	Returns a new ASTRegion that is the same as this one but with the specified coordinate system.

	Parameters

	
	mapping (~cornish.mapping.ASTMapping class) – The mapping to transform positions from the current ASTRegion to those specified by the given frame.

	frame (~cornish.frame.ASTFrame class) – Coordinate system frame to convert the current ASTRegion to.

	Returns

	region – A new region object covering the same area but in the frame specified in frame.

	Return type

	ASTRegion

	Raises

	Exception – An exception is raised for missing parameters.

	
maskOnto(image=None, mapping=None, fits_coordinates=True, lower_bounds=None, mask_inside=True, mask_value=nan)

	Apply this region as a mask on top of the provided image; note: the image values are overwritten!

	Parameters

	
	image – numpy.ndarray of pixel values (or other array of values)

	mapping – mapping from this region to the pixel coordinates of the provided image

	fits_coordinates (bool) – use the pixel coordinates of a FITS file (i.e. origin = [0.5, 0.5] for 2D)

	lower_bounds – lower bounds of provided image, only specify if not using FITS coordinates

	mask_inside – True: mask the inside of this region; False: mask outside of this region

	mask_value – the value to set the masked image pixels to

	Returns

	number of pixels in image masked

	
property meshSize: int

	Number of points used to create a mesh covering the region.

	Return type

	int

	
property naxes: int

	Returns the number of axes for the frame.

	Return type

	int

	
negate()

	Negate the region, i.e. points inside the region will be outside, and vice versa.

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
offsetAlongGeodesicCurve(point1, point2, offset)

	Coordinates and offset value should be in the units of the frame, e.g. pixels, degrees.

In a sky frame, the line will be curved. In a basic frame, the line will be straight.

	Parameters

	
	point1 (Iterable) – a two element list/tuple/NumPy array of the first point coordinates

	point2 (Iterable) – a two element list/tuple/NumPy array of the second point coordinates

	offset (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – a distance along the geodesic sphere connecting the two points

	
overlaps(region)

	Return True if this region overlaps with the provided one.

	Return type

	bool

	
pointInRegion(point)

	Returns True if the provided point lies inside this region, False otherwise.

If no units are specified degrees are assumed.

	Parameters

	point (Union[Iterable, SkyCoord, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – a coordinate point in the same frame as this region

	Return type

	bool

	
property points: numpy.ndarray

	The array of points that define the region. The interpretation of the points is dependent on the type of shape in question.

Box: returns two points; the center and a box corner.
Circle: returns two points; the center and a point on the circumference.
CmpRegion: no points returned; to get points that define a compound region, call this method on each of the component regions via the method “decompose”.
Ellipse: three points: 1) center, 2) end of one axis, 3) end of the other axis
Interval: two points: 1) lower bounds position, 2) upper bounds position (reversed when interval is an excluded interval)
NullRegion: no points
PointList: positions that the list was constructed with
Polygon: vertex positions used to construct the polygon
Prism: no points (see CmpRegion)

NOTE: points returned reflect the current coordinate system and may be different from the initial construction

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	NumPy array of coordinate points in degrees, shape (ncoord,2), e.g. [[ra1,dec1], [ra2, dec2], …, [ra_n, dec_n]]

	
regionWithMapping(map=None, frame=None)

	Returns a new ASTRegion with the coordinate system from the supplied frame.

Corresponds to the astMapRegion C function (starlink.Ast.mapregion).

	Parameters

	
	map – A mapping that can convert coordinates from the system of the current region to that of the supplied frame.

	frame – A frame containing the coordinate system for the new region.

	Return type

	ASTRegion

	Returns

	new ASTRegion with a new coordinate system

	
setLabelForAxis(label=None)

	Set the label for the specified axis.

	
setUnitForAxis(axis=None, unit=None)

	Set the unit as a string value for the specified axis.

	
property system

	String which identifies the coordinate system represented by the Frame.
The system is Cartesian by default, but can have other values for subclasses of Frame,
e.g. FK4, Galactic.

	
property title: str

	Returns the frame title, a string describing the coordinate system which the frame represents.

	Return type

	str

	
abstract toPolygon(npoints=200, maxerr=<Quantity 1. arcsec>)

	Method that guarantees returning a polygon that describes or approximates this region.

This method provides a common interface to create polygons from different region types.
Calling this on an ASTPolygon will return itself; calling it on an ASTCircle
will return a polygon that approximates the circle. The parameters ‘npoints’ and
‘maxerr’ will be used only when appropriate.

	Parameters

	
	npoints – number of points to sample from the region’s boundary for the resulting polygon

	maxerr (astropy.units.Quantity [https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) –

	Return type

	ASTPolygon

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property uncertainty

	Uncertainties associated with the boundary of the Box.

The uncertainty in any point on the boundary of the Box is found by
shifting the supplied “uncertainty” Region so that it is centered at
the boundary point being considered. The area covered by the shifted
uncertainty Region then represents the uncertainty in the boundary
position. The uncertainty is assumed to be the same for all points.

	
unit(axis=None)

	Return the unit for the specified axis.

ASTPolygon

	
class cornish.ASTPolygon(ast_object=None, frame=None, points=None, fits_header=None)

	Bases: cornish.region.region.ASTRegion

ASTPolygon is an ASTRegion that represents a polygon, a collection of vertices on a sphere in a 2D plane.

Accepted signatures for creating an ASTPolygon:

p = ASTPolygon(frame, points)
p = ASTPolygon(fits_header, points) # get the frame from the FITS header provided
p = ASTPolygon(ast_object) # where ast_object is a starlink.Ast.Polygon object

Points may be provided as a list of coordinate points, e.g.

[(x1, y1), (x2, y2), ... , (xn, yn)]

or as two parallel arrays, e.g.

[[x1, x2, x3, ..., xn], [y1, y2, y3, ..., yn]]

A string format that can be parsed as above is also accepted, e.g.:

"((131.758,5.366),(131.759,3.766),(132.561,3.767),(133.363,3.766),(133.364,5.366),(132.577,5.367))"

	Parameters

	
	ast_object (Optional[Polygon]) – create a new ASTPolygon from an existing starlink.Ast.Polygon object

	frame (Union[ASTFrame, Frame, ASTRegion, Region, None]) – the frame the provided points lie in, accepts either ASTFrame or starlink.Ast.Frame objects

	points – points in degrees that describe the polygon, may be a list of pairs of points or two parallel arrays of axis points

	Returns

	Returns a new ASTPolygon object.

	
angle(vertex=None, points=None)

	Calculate the angle in this frame between two line segments connected by a point.

Let A = point1, C = point2, and B = the vertex point. This method calculates the
angle between the line segments AB and CB.

If the frame is a sky frame, lines are drawn on great circles.
Units are assumed to be degrees if not provided with units,
e.g. as an astropy.coordinates.SkyCoord or astropy.units.Quantity values.

	Parameters

	
	vertex (Optional[Iterable]) – a two element list/tuple/Numpy array or a SkyCoord of the vertex

	points (Optional[Container[Union[SkyCoord, Iterable]]]) – a two element list/tuple/etc. containing two points in this frame

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property area: astropy.units.quantity.Quantity

	Returns the area of the polygon as an astropy.units.quantity.Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]. [Not yet implemented for non-sky frames.]

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
boundaryPointMesh(npoints=None)

	Returns an array of evenly distributed points that cover the boundary of the region.
For example, if the region is a box, it will generate a list of points that trace the edges of the box.

The default value of ‘npoints’ is 200 for 2D regions and 2000 for three or more dimensions.

	Parameters

	npoints (Optional[int]) – the approximate number of points to generate in the mesh

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	list of points in degrees

	
boundingBox()

	Returns an ASTBox region that bounds this region where the box sides align with RA, dec.

	Return type

	ASTBox

	
boundingCircle()

	Returns the smallest circle (ASTCircle) that bounds this region.

It is up to the caller to know that this is a 2D region (only minimal checks are made).
:raises cornish.exc.NotA2DRegion: raised when attempting to get a bounding circle for a region that is not 2D

	Return type

	ASTCircle

	
property bounds: Tuple

	Returns lower and upper coordinate points that bound this region.

	Return type

	Tuple

	
containsPoint(point=None)

	Returns True if the provided point lies inside this region, False otherwise.

This method is a direct synonym for pointInRegion().
The name “containsPoint” is more appropriate from an object perspective,
but the pointInRegion method is present for consistency with the AST library.

	Parameters

	point (Union[Iterable, SkyCoord, None]) – a coordinate point in the same frame as this region

	Return type

	bool

	
distance(point1, point2)

	Distance between two points in this frame.

	Parameters

	
	point1 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the first point coordinates

	point2 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the second point coordinates

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property domain: str

	The physical domain of the coordinate system (string value).
The Domain attribute also controls how Frames align with each other.
If the Domain value in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Example values: GRID, FRACTION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS

Frames created by the user (for instance, using WCSADD) can have any Domain value, but the standard
domain names should be avoided unless the standard meanings are appropriate for the Frame being created.

	Return type

	str

	
downsize(maxerr=None, maxvert=0)

	Returns a new ASTPolygon that contains a subset of the vertices of this polygon.

The subset is chosen so that the returned polygon is a good approximation of this polygon,
within the limits specified. The density of points in the new polygon is greater
where the curvature of the boundary is greater.

The ‘maxerr’ parameter set the maximum allowed discrepancy between the original and
new polygons as a geodesic distance within the polygon’s coordinate frame. Setting this to zero
returns a new polygon with the number of vertices set in “maxvert”.

The ‘maxvert’ parameter set the maximum number of vertices the new polygon can have. If this is
less than 3, the number of vertices in the returned polygon will be the minimum needed
to achieve the maximum discrepancy specified by “maxerr”. The unadorned value is in radians,
but accepts Astropy unit objects.

	Parameters

	
	maxerr – maximum allowed discrepancy in radians between the original and new polygons as a geodesic distance within the polygon’s coordinate frame

	maxvert – maximum allowed number of vertices in the returned polygon

	Returns

	a new ASTPolygon.

	
property fillFactor

	<Fraction of the Region which is of interest>

	
frame()

	Returns a copy of the frame encapsulated by this region.

Note that the frame is not directly accessible; both this method and the underlying starlink-pyast function returns a copy.

	Return type

	ASTFrame

	
static frameFromAstObject(ast_object=None)

	Factory method that returns the appropriate Cornish frame object (e.g. ASTSkyFrame) for a given frame.

	Parameters

	ast_object (Optional[Frame]) – an Ast.Frame object

	
static frameFromFITSHeader(header)

	Factory method that returns a new ASTFrame from the provided FITS header.

	
frameSet()

	Returns a copy of the frameset encapsulated by this region.

From AST docs:

The base Frame is the Frame in which the box was originally
defined, and the current Frame is the Frame into which the
Region is currently mapped (i.e. it will be the same as the
Frame returned by astGetRegionFrame).

	Return type

	ASTFrameSet

	
framesetWithMappingTo(template_frame=None)

	Search this frame (or set) to identify a frame that shares the same coordinate system as the provided template frame.

For example, this method can be used to see if this frame
(or frame set) contains a sky frame.

Returns None if no mapping can be found.

	Parameters

	template_frame (Optional[ASTFrame]) – an instance of the type of frame
being searched for

	Return type

	Optional[ASTFrame]

	Returns

	a frame that matches the template

	
static fromFITSFilepath(path=None, hdu=1)

	Create a polygon bounding the region of a 2D image.

	Parameters

	
	path (Union[str, PathLike, None]) – the path to the FITS file

	hdu (int) – the HDU to open, first HDU = 1

	
static fromFITSHeader(header=None, uncertainty=4.848e-06)

	Creates an ASTPolygon in a sky frame from a FITS header. Header of HDU must be a 2D image and contain WCS information.

	Parameters

	
	header – a FITS header

	uncertainty – TODO: parameter not yet used

	
static fromPointsOnSkyFrame(frame=None, points=None, expand_by=<Quantity 20. pix>)

	Create an ASTPolygon specifically in a sky frame from an array of points.

Points can be provided in degrees either as an array or coordinate pairs, e.g.

np.array([[1,2], [3,4], [5,6]])

or as parallel arrays of ra,dec:

np.array([[1,3,5], [2,4,6]])

	Parameters

	
	points (Optional[ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – coordinate points, either as a list of coordinate pairs or two parallel ra,dec arrays

	frame (Optional[ASTSkyFrame]) – the frame the points lie in, specified as an ASTSkyFrame object

	expand_by (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – number of pixels to extend the polygon beyond the provided points

	Returns

	new ASTPolygon object

	
fullyEncloses(region)

	Returns ‘True’ if this region fully encloses the provided region.

	Return type

	bool

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
interiorPointMesh(npoints=None)

	Returns an array of evenly distributed points that cover the surface of the region.
For example, if the region is a box, it will generate a list of points that fill the interior area of the box.

The default value of ‘npoints’ is 200 for 2D regions and 2000 for three or more dimensions.

	Parameters

	npoints (Optional[int]) – the approximate number of points to generate in the mesh

	Returns

	array of points in degrees

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isAdaptive

	Boolean attribute that indicates whether the area adapt to changes in the coordinate system.

	
property isBounded: bool

	Boolean attribute that indicates whether the region is bounded.

	Return type

	bool

	
property isClosed: bool

	Boolean attribute that indicates whether the boundary be considered to be inside the region.

	Return type

	bool

	
isFullyWithin(region)

	Returns ‘True’ if this region is fully within the provided region.

	Return type

	bool

	
isIdenticalTo(region)

	Returns ‘True’ if this region is identical (to within their uncertainties) to the provided region, ‘False’ otherwise.

	Return type

	bool

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isNegated

	Boolean attribute that indicates whether the original region has been negated.

	
isNegationOf(region)

	Returns ‘True’ if this region is the exact negation of the provided region.

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property isSkyFrame: bool

	Returns True if this is a SkyFrame, False otherwise.

	Return type

	bool

	
label(axis=None)

	Return the label for the specified axis.

	Return type

	str

	
mapRegionMesh(mapping=None, frame=None)

	Returns a new ASTRegion that is the same as this one but with the specified coordinate system.

	Parameters

	
	mapping (~cornish.mapping.ASTMapping class) – The mapping to transform positions from the current ASTRegion to those specified by the given frame.

	frame (~cornish.frame.ASTFrame class) – Coordinate system frame to convert the current ASTRegion to.

	Returns

	region – A new region object covering the same area but in the frame specified in frame.

	Return type

	ASTRegion

	Raises

	Exception – An exception is raised for missing parameters.

	
maskOnto(image=None, mapping=None, fits_coordinates=True, lower_bounds=None, mask_inside=True, mask_value=nan)

	Apply this region as a mask on top of the provided image; note: the image values are overwritten!

	Parameters

	
	image – numpy.ndarray of pixel values (or other array of values)

	mapping – mapping from this region to the pixel coordinates of the provided image

	fits_coordinates (bool) – use the pixel coordinates of a FITS file (i.e. origin = [0.5, 0.5] for 2D)

	lower_bounds – lower bounds of provided image, only specify if not using FITS coordinates

	mask_inside – True: mask the inside of this region; False: mask outside of this region

	mask_value – the value to set the masked image pixels to

	Returns

	number of pixels in image masked

	
property meshSize: int

	Number of points used to create a mesh covering the region.

	Return type

	int

	
property naxes: int

	Returns the number of axes for the frame.

	Return type

	int

	
negate()

	Negate the region, i.e. points inside the region will be outside, and vice versa.

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
offsetAlongGeodesicCurve(point1, point2, offset)

	Coordinates and offset value should be in the units of the frame, e.g. pixels, degrees.

In a sky frame, the line will be curved. In a basic frame, the line will be straight.

	Parameters

	
	point1 (Iterable) – a two element list/tuple/NumPy array of the first point coordinates

	point2 (Iterable) – a two element list/tuple/NumPy array of the second point coordinates

	offset (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – a distance along the geodesic sphere connecting the two points

	
overlaps(region)

	Return True if this region overlaps with the provided one.

	Return type

	bool

	
pointInRegion(point)

	Returns True if the provided point lies inside this region, False otherwise.

If no units are specified degrees are assumed.

	Parameters

	point (Union[Iterable, SkyCoord, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – a coordinate point in the same frame as this region

	Return type

	bool

	
property points: numpy.ndarray

	The array of points that define the region. The interpretation of the points is dependent on the type of shape in question.

Box: returns two points; the center and a box corner.
Circle: returns two points; the center and a point on the circumference.
CmpRegion: no points returned; to get points that define a compound region, call this method on each of the component regions via the method “decompose”.
Ellipse: three points: 1) center, 2) end of one axis, 3) end of the other axis
Interval: two points: 1) lower bounds position, 2) upper bounds position (reversed when interval is an excluded interval)
NullRegion: no points
PointList: positions that the list was constructed with
Polygon: vertex positions used to construct the polygon
Prism: no points (see CmpRegion)

NOTE: points returned reflect the current coordinate system and may be different from the initial construction

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns

	NumPy array of coordinate points in degrees, shape (ncoord,2), e.g. [[ra1,dec1], [ra2, dec2], …, [ra_n, dec_n]]

	
regionWithMapping(map=None, frame=None)

	Returns a new ASTRegion with the coordinate system from the supplied frame.

Corresponds to the astMapRegion C function (starlink.Ast.mapregion).

	Parameters

	
	map – A mapping that can convert coordinates from the system of the current region to that of the supplied frame.

	frame – A frame containing the coordinate system for the new region.

	Return type

	ASTRegion

	Returns

	new ASTRegion with a new coordinate system

	
setLabelForAxis(label=None)

	Set the label for the specified axis.

	
setUnitForAxis(axis=None, unit=None)

	Set the unit as a string value for the specified axis.

	
property system

	String which identifies the coordinate system represented by the Frame.
The system is Cartesian by default, but can have other values for subclasses of Frame,
e.g. FK4, Galactic.

	
property title: str

	Returns the frame title, a string describing the coordinate system which the frame represents.

	Return type

	str

	
toPolygon(npoints=200, maxerr=<Quantity 1. arcsec>)

	Common interface to return a polygon from a region; here ‘self’ is returned.

The parameters ‘npoints’ and ‘maxerr’ are ignored.

	Return type

	ASTPolygon

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property uncertainty

	Uncertainties associated with the boundary of the Box.

The uncertainty in any point on the boundary of the Box is found by
shifting the supplied “uncertainty” Region so that it is centered at
the boundary point being considered. The area covered by the shifted
uncertainty Region then represents the uncertainty in the boundary
position. The uncertainty is assumed to be the same for all points.

	
unit(axis=None)

	Return the unit for the specified axis.

Mappings and Frames APIs

Classes that describe frames and frame mappings are documented here.

ASTMapping

	
class cornish.mapping.ASTMapping(ast_object=None)

	Bases: cornish.ast_object.ASTObject

	Parameters

	ast_object – an existing starlink.Ast.Mapping object

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

ASTFrame

	
class cornish.mapping.ASTFrame(ast_object=None, naxes=None)

	Bases: cornish.mapping.mapping.ASTMapping

A Frame is a representation of a coordinate system, e.g. Cartesian, RA/dec.
It contains information about the labels which appear on the axes, the axis units,
a title, knowledge of how to format the coordinate values on each axis, etc.

List and description of starlink.Ast.Frame attributes in documentation: Section 7.5.

Ref:
http://www.starlink.rl.ac.uk/docs/sun95.htx/sun95se27.html
http://www.strw.leidenuniv.nl/docs/starlink/sun210.htx/node71.html

	Parameters

	ast_object (Optional[Frame]) – an existing starlink.Ast.Frame object

	
angle(vertex=None, points=None)

	Calculate the angle in this frame between two line segments connected by a point.

Let A = point1, C = point2, and B = the vertex point. This method calculates the
angle between the line segments AB and CB.

If the frame is a sky frame, lines are drawn on great circles.
Units are assumed to be degrees if not provided with units,
e.g. as an astropy.coordinates.SkyCoord or astropy.units.Quantity values.

	Parameters

	
	vertex (Optional[Iterable]) – a two element list/tuple/Numpy array or a SkyCoord of the vertex

	points (Optional[Container[Union[SkyCoord, Iterable]]]) – a two element list/tuple/etc. containing two points in this frame

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
distance(point1, point2)

	Distance between two points in this frame.

	Parameters

	
	point1 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the first point coordinates

	point2 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the second point coordinates

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property domain: str

	The physical domain of the coordinate system (string value).
The Domain attribute also controls how Frames align with each other.
If the Domain value in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Example values: GRID, FRACTION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS

Frames created by the user (for instance, using WCSADD) can have any Domain value, but the standard
domain names should be avoided unless the standard meanings are appropriate for the Frame being created.

	Return type

	str

	
static frameFromAstObject(ast_object=None)

	Factory method that returns the appropriate Cornish frame object (e.g. ASTSkyFrame) for a given frame.

	Parameters

	ast_object (Optional[Frame]) – an Ast.Frame object

	
static frameFromFITSHeader(header)

	Factory method that returns a new ASTFrame from the provided FITS header.

	
framesetWithMappingTo(template_frame=None)

	Search this frame (or set) to identify a frame that shares the same coordinate system as the provided template frame.

For example, this method can be used to see if this frame
(or frame set) contains a sky frame.

Returns None if no mapping can be found.

	Parameters

	template_frame (Optional[ASTFrame]) – an instance of the type of frame
being searched for

	Return type

	Optional[ASTFrame]

	Returns

	a frame that matches the template

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property isSkyFrame: bool

	Returns True if this is a SkyFrame, False otherwise.

	Return type

	bool

	
label(axis=None)

	Return the label for the specified axis.

	Return type

	str

	
property naxes: int

	Returns the number of axes for the frame.

	Return type

	int

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
offsetAlongGeodesicCurve(point1, point2, offset)

	Coordinates and offset value should be in the units of the frame, e.g. pixels, degrees.

In a sky frame, the line will be curved. In a basic frame, the line will be straight.

	Parameters

	
	point1 (Iterable) – a two element list/tuple/NumPy array of the first point coordinates

	point2 (Iterable) – a two element list/tuple/NumPy array of the second point coordinates

	offset (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – a distance along the geodesic sphere connecting the two points

	
setLabelForAxis(label=None)

	Set the label for the specified axis.

	
setUnitForAxis(axis=None, unit=None)

	Set the unit as a string value for the specified axis.

	
property system

	String which identifies the coordinate system represented by the Frame.
The system is Cartesian by default, but can have other values for subclasses of Frame,
e.g. FK4, Galactic.

	
property title: str

	Returns the frame title, a string describing the coordinate system which the frame represents.

	Return type

	str

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
unit(axis=None)

	Return the unit for the specified axis.

ASTFrameSet

	
class cornish.mapping.ASTFrameSet(ast_object=None, base_frame=None)

	Bases: cornish.mapping.frame.frame.ASTFrame

Create a new AST frame set.
Object can be created from an starlink.Ast.FrameSet “primitive”
(e.g. returned by another object).

A set of inter-related coordinate systems made up of existing mapping’s and frames.
A FrameSet may be extended by adding a new Frame and associated Mapping.

A FrameSet must have a “base” frame which represents the “native” coordinate system
(for example, the pixel coordinates of an image). Similarly, one Frame is termed the
current Frame and represents the “currently-selected” coordinates. It might typically
be a celestial or spectral coordinate system and would be used during interactions
with a user, as when plotting axes on a graph or producing a table of results.
Other Frames within the FrameSet represent a library of alternative coordinate systems
which a software user can select by making them current.

Accepted signatures for creating an ASTFrameSet:

	Parameters

	
	ast_object (Optional[FrameSet]) – an Ast.astFrame object from the starlink-pyast library

	base_frame (Union[FrameSet, ASTFrame, None]) – base frame to create the FrameSet from

	
addToBaseFrame(frame=None)

	Add a new frame to this frame set’s base frame.

	
angle(vertex=None, points=None)

	Calculate the angle in this frame between two line segments connected by a point.

Let A = point1, C = point2, and B = the vertex point. This method calculates the
angle between the line segments AB and CB.

If the frame is a sky frame, lines are drawn on great circles.
Units are assumed to be degrees if not provided with units,
e.g. as an astropy.coordinates.SkyCoord or astropy.units.Quantity values.

	Parameters

	
	vertex (Optional[Iterable]) – a two element list/tuple/Numpy array or a SkyCoord of the vertex

	points (Optional[Container[Union[SkyCoord, Iterable]]]) – a two element list/tuple/etc. containing two points in this frame

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
property baseFrame

	Return the base frame.

	
centerCoordinates()

	Returns the coordinates at the center of the frame.

	
convert(points, forward=True)

	

	
property currentFrame

	Returns the current frame.

	
distance(point1, point2)

	Distance between two points in this frame.

	Parameters

	
	point1 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the first point coordinates

	point2 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the second point coordinates

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property domain: str

	The physical domain of the coordinate system (string value).
The Domain attribute also controls how Frames align with each other.
If the Domain value in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Example values: GRID, FRACTION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS

Frames created by the user (for instance, using WCSADD) can have any Domain value, but the standard
domain names should be avoided unless the standard meanings are appropriate for the Frame being created.

	Return type

	str

	
frameAtIndex(frame_index)

	Return the frame at the specified index within this frame set.

	Return type

	ASTFrame

	
static frameFromAstObject(ast_object=None)

	Factory method that returns the appropriate Cornish frame object (e.g. ASTSkyFrame) for a given frame.

	Parameters

	ast_object (Optional[Frame]) – an Ast.Frame object

	
static frameFromFITSHeader(header)

	Factory method that returns a new ASTFrame from the provided FITS header.

	
framesetWithMappingTo(template_frame=None)

	Search this frame (or set) to identify a frame that shares the same coordinate system as the provided template frame.

For example, this method can be used to see if this frame
(or frame set) contains a sky frame.

Returns None if no mapping can be found.

	Parameters

	template_frame (Optional[ASTFrame]) – an instance of the type of frame
being searched for

	Return type

	Optional[ASTFrame]

	Returns

	a frame that matches the template

	
static fromFITSHeader(fits_header=None)

	Static method that returns a FrameSet object read from the provided FITS header.

	
static fromFrames(frame1, frame2)

	Static method to create a frame set from two existing frames.

A frame set is a mapping between two frames that can convert coordinates from
one frame (the “base” frame) to the other frame (the “current” frame).

	Parameters

	
	frame1 (Union[ASTFrame, Frame]) – the “base” frame (frame to convert coordinates from)

	frame2 (Union[ASTFrame, Frame]) – the “current” frame (frame to convert coordinates to)

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property isSkyFrame: bool

	Returns True if this is a SkyFrame, False otherwise.

	Return type

	bool

	
label(axis=None)

	Return the label for the specified axis.

	Return type

	str

	
property mapping

	Return an object that maps points from the base frame to the current frame of this frame set.

	
property naxes: int

	Returns the number of axes for the frame.

	Return type

	int

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
offsetAlongGeodesicCurve(point1, point2, offset)

	Coordinates and offset value should be in the units of the frame, e.g. pixels, degrees.

In a sky frame, the line will be curved. In a basic frame, the line will be straight.

	Parameters

	
	point1 (Iterable) – a two element list/tuple/NumPy array of the first point coordinates

	point2 (Iterable) – a two element list/tuple/NumPy array of the second point coordinates

	offset (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – a distance along the geodesic sphere connecting the two points

	
pix2world(points)

	Convert provided coordinates from a world frame to a pixel frame.

This method will throw a cornish.exc.FrameNotAvailable exception if
the frame set does not contain both a pixel and world frame.

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. pixel to sky:

[[x1, x2, ...], [y1, y2, ...]]

A single point may also be specified alone, e.g. [a,b] or np.array([a,b]).

	Parameters

	points (Iterable) – input list of coordinates as numpy.ndarray, 2-dimensional array with shape (2,npoint)

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
removeCurrentFrame()

	Remove the current frame from the frame set.

	
setLabelForAxis(label=None)

	Set the label for the specified axis.

	
setUnitForAxis(axis=None, unit=None)

	Set the unit as a string value for the specified axis.

	
property system

	String which identifies the coordinate system represented by the Frame.
The system is Cartesian by default, but can have other values for subclasses of Frame,
e.g. FK4, Galactic.

	
property title: str

	Returns the frame title, a string describing the coordinate system which the frame represents.

	Return type

	str

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
unit(axis=None)

	Return the unit for the specified axis.

	
world2pix(points)

	Convert provided coordinates from a world frame to a pixel frame.

This method will throw a cornish.exc.FrameNotAvailable exception if
the frame set does not contain both a pixel and world frame.

Points must have the shape (2,n), e.g.:

[[ra1, ra2, ...], [dec1, dec2, ...]]

A single point may also be specified alone, e.g. [a,b] or np.array([a,b]).

	Parameters

	points (Union[Iterable, SkyCoord]) – input list of coordinates as numpy.ndarray, 2-dimensional array with shape (2,npoints); units are assumed to be degrees if not specified via astropy.units.Quantity

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

ASTSkyFrame

	
class cornish.mapping.ASTSkyFrame(ast_object=None, equinox=None, system=None, epoch=None)

	Bases: cornish.mapping.frame.frame.ASTFrame

A SkyFrame is a specialised form of Frame which describes celestial longitude/latitude coordinate systems.

Systems available in AST:

ICRS, J2000, AZEL, ECLIPTIC, FK4, FK4-NO-E,
FK4_NO_E, FK5, EQUATORIAL,
GALACTIC, GAPPT, GEOCENTRIC, APPARENT,
HELIOECLIPTIC, SUPERGALACTIC

	Parameters

	
	ast_object (Optional[SkyFrame]) – an existing starlink.Ast.SkyFrame object

	equinox (Optional[str]) – frame equinox, default value 2000.0

	system (Optional[str]) – coordinate system used to describe positions within the domain, see AST System documentation [http://starlink.eao.hawaii.edu/docs/sun211.htx/sun211ss424.html], default value = ICRS

	epoch (Optional[str]) – epoch of the mean equinox as a string value, e.g. J2000.0, B1950.0, default = 2000.0

	
angle(vertex=None, points=None)

	Calculate the angle in this frame between two line segments connected by a point.

Let A = point1, C = point2, and B = the vertex point. This method calculates the
angle between the line segments AB and CB.

If the frame is a sky frame, lines are drawn on great circles.
Units are assumed to be degrees if not provided with units,
e.g. as an astropy.coordinates.SkyCoord or astropy.units.Quantity values.

	Parameters

	
	vertex (Optional[Iterable]) – a two element list/tuple/Numpy array or a SkyCoord of the vertex

	points (Optional[Container[Union[SkyCoord, Iterable]]]) – a two element list/tuple/etc. containing two points in this frame

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
distance(point1, point2)

	Distance between two points in this frame.

	Parameters

	
	point1 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the first point coordinates

	point2 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the second point coordinates

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property domain: str

	The physical domain of the coordinate system (string value).
The Domain attribute also controls how Frames align with each other.
If the Domain value in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Example values: GRID, FRACTION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS

Frames created by the user (for instance, using WCSADD) can have any Domain value, but the standard
domain names should be avoided unless the standard meanings are appropriate for the Frame being created.

	Return type

	str

	
property epoch

	

	
property equinox

	
Todo

how to evaluate a valid equinox string?

	
static frameFromAstObject(ast_object=None)

	Factory method that returns the appropriate Cornish frame object (e.g. ASTSkyFrame) for a given frame.

	Parameters

	ast_object (Optional[Frame]) – an Ast.Frame object

	
static frameFromFITSHeader(header)

	Factory method that returns a new ASTFrame from the provided FITS header.

	
framesetWithMappingTo(template_frame=None)

	Search this frame (or set) to identify a frame that shares the same coordinate system as the provided template frame.

For example, this method can be used to see if this frame
(or frame set) contains a sky frame.

Returns None if no mapping can be found.

	Parameters

	template_frame (Optional[ASTFrame]) – an instance of the type of frame
being searched for

	Return type

	Optional[ASTFrame]

	Returns

	a frame that matches the template

	
classmethod fromFITSHeader(header)

	Returns a SkyFrame built from the WCS in the provided header, if found.
Creates a sky frame from the provided FITS header.
:raises: exc.NoWCSFound: if no sky frame WCS found

	Return type

	ASTSkyFrame

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property isSkyFrame: bool

	Returns True if this is a SkyFrame, False otherwise.

	Return type

	bool

	
label(axis=None)

	Return the label for the specified axis.

	Return type

	str

	
property naxes: int

	Returns the number of axes for the frame.

	Return type

	int

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
offsetAlongGeodesicCurve(point1, point2, offset)

	Coordinates and offset value should be in the units of the frame, e.g. pixels, degrees.

In a sky frame, the line will be curved. In a basic frame, the line will be straight.

	Parameters

	
	point1 (Iterable) – a two element list/tuple/NumPy array of the first point coordinates

	point2 (Iterable) – a two element list/tuple/NumPy array of the second point coordinates

	offset (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – a distance along the geodesic sphere connecting the two points

	
setLabelForAxis(label=None)

	Set the label for the specified axis.

	
setUnitForAxis(axis=None, unit=None)

	Set the unit as a string value for the specified axis.

	
property system

	String which identifies the coordinate system represented by the Frame.
The system is Cartesian by default, but can have other values for subclasses of Frame,
e.g. FK4, Galactic.

	
property title: str

	Returns the frame title, a string describing the coordinate system which the frame represents.

	Return type

	str

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
unit(axis=None)

	Return the unit for the specified axis.

ASTICRSFrame

	
class cornish.mapping.ASTICRSFrame(equinox='2000.0', epoch='2000.0')

	Bases: cornish.mapping.frame.sky_frame.ASTSkyFrame

Factory class that returns an ASTSkyFrame automatically set to System=ICRS, equinox=2000.0, epoch=2000.0.

	
angle(vertex=None, points=None)

	Calculate the angle in this frame between two line segments connected by a point.

Let A = point1, C = point2, and B = the vertex point. This method calculates the
angle between the line segments AB and CB.

If the frame is a sky frame, lines are drawn on great circles.
Units are assumed to be degrees if not provided with units,
e.g. as an astropy.coordinates.SkyCoord or astropy.units.Quantity values.

	Parameters

	
	vertex (Optional[Iterable]) – a two element list/tuple/Numpy array or a SkyCoord of the vertex

	points (Optional[Container[Union[SkyCoord, Iterable]]]) – a two element list/tuple/etc. containing two points in this frame

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
distance(point1, point2)

	Distance between two points in this frame.

	Parameters

	
	point1 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the first point coordinates

	point2 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the second point coordinates

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property domain: str

	The physical domain of the coordinate system (string value).
The Domain attribute also controls how Frames align with each other.
If the Domain value in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Example values: GRID, FRACTION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS

Frames created by the user (for instance, using WCSADD) can have any Domain value, but the standard
domain names should be avoided unless the standard meanings are appropriate for the Frame being created.

	Return type

	str

	
property epoch

	

	
property equinox

	
Todo

how to evaluate a valid equinox string?

	
static frameFromAstObject(ast_object=None)

	Factory method that returns the appropriate Cornish frame object (e.g. ASTSkyFrame) for a given frame.

	Parameters

	ast_object (Optional[Frame]) – an Ast.Frame object

	
static frameFromFITSHeader(header)

	Factory method that returns a new ASTFrame from the provided FITS header.

	
framesetWithMappingTo(template_frame=None)

	Search this frame (or set) to identify a frame that shares the same coordinate system as the provided template frame.

For example, this method can be used to see if this frame
(or frame set) contains a sky frame.

Returns None if no mapping can be found.

	Parameters

	template_frame (Optional[ASTFrame]) – an instance of the type of frame
being searched for

	Return type

	Optional[ASTFrame]

	Returns

	a frame that matches the template

	
classmethod fromFITSHeader(header)

	Returns a SkyFrame built from the WCS in the provided header, if found.
Creates a sky frame from the provided FITS header.
:raises: exc.NoWCSFound: if no sky frame WCS found

	Return type

	ASTSkyFrame

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property isSkyFrame: bool

	Returns True if this is a SkyFrame, False otherwise.

	Return type

	bool

	
label(axis=None)

	Return the label for the specified axis.

	Return type

	str

	
property naxes: int

	Returns the number of axes for the frame.

	Return type

	int

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
offsetAlongGeodesicCurve(point1, point2, offset)

	Coordinates and offset value should be in the units of the frame, e.g. pixels, degrees.

In a sky frame, the line will be curved. In a basic frame, the line will be straight.

	Parameters

	
	point1 (Iterable) – a two element list/tuple/NumPy array of the first point coordinates

	point2 (Iterable) – a two element list/tuple/NumPy array of the second point coordinates

	offset (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – a distance along the geodesic sphere connecting the two points

	
setLabelForAxis(label=None)

	Set the label for the specified axis.

	
setUnitForAxis(axis=None, unit=None)

	Set the unit as a string value for the specified axis.

	
property system

	String which identifies the coordinate system represented by the Frame.
The system is Cartesian by default, but can have other values for subclasses of Frame,
e.g. FK4, Galactic.

	
property title: str

	Returns the frame title, a string describing the coordinate system which the frame represents.

	Return type

	str

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
unit(axis=None)

	Return the unit for the specified axis.

ASTCompoundFrame

	
class cornish.mapping.ASTCompoundFrame(ast_object=None, naxes=None)

	Bases: cornish.mapping.frame.frame.ASTFrame

A compound frame is the merging of two existing ASTFrame objects.

For example, a compound frame could have celestial coordinates on two axes
and an unrelated coordinate (wavelength, perhaps) on a third.
Knowledge of the relationships between the axes is preserved internally
by the process of constructing the frames which represents them.

	
angle(vertex=None, points=None)

	Calculate the angle in this frame between two line segments connected by a point.

Let A = point1, C = point2, and B = the vertex point. This method calculates the
angle between the line segments AB and CB.

If the frame is a sky frame, lines are drawn on great circles.
Units are assumed to be degrees if not provided with units,
e.g. as an astropy.coordinates.SkyCoord or astropy.units.Quantity values.

	Parameters

	
	vertex (Optional[Iterable]) – a two element list/tuple/Numpy array or a SkyCoord of the vertex

	points (Optional[Container[Union[SkyCoord, Iterable]]]) – a two element list/tuple/etc. containing two points in this frame

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property astString

	Return the AST serialization of this object.

	
ast_description()

	A string description of this object, customized for each subclass of ASTObject.

	
distance(point1, point2)

	Distance between two points in this frame.

	Parameters

	
	point1 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the first point coordinates

	point2 (Union[Iterable, SkyCoord]) – a two element list/tuple/Numpy array or a SkyCoord of the second point coordinates

	Return type

	Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]

	
property domain: str

	The physical domain of the coordinate system (string value).
The Domain attribute also controls how Frames align with each other.
If the Domain value in a Frame is set, then only Frames with the same Domain value can be aligned with it.

Example values: GRID, FRACTION, PIXEL, AXIS, SKY, SPECTRUM, CURPIC, NDC, BASEPIC, GRAPHICS

Frames created by the user (for instance, using WCSADD) can have any Domain value, but the standard
domain names should be avoided unless the standard meanings are appropriate for the Frame being created.

	Return type

	str

	
static frameFromAstObject(ast_object=None)

	Factory method that returns the appropriate Cornish frame object (e.g. ASTSkyFrame) for a given frame.

	Parameters

	ast_object (Optional[Frame]) – an Ast.Frame object

	
static frameFromFITSHeader(header)

	Factory method that returns a new ASTFrame from the provided FITS header.

	
framesetWithMappingTo(template_frame=None)

	Search this frame (or set) to identify a frame that shares the same coordinate system as the provided template frame.

For example, this method can be used to see if this frame
(or frame set) contains a sky frame.

Returns None if no mapping can be found.

	Parameters

	template_frame (Optional[ASTFrame]) – an instance of the type of frame
being searched for

	Return type

	Optional[ASTFrame]

	Returns

	a frame that matches the template

	
property id: str

	String which may be used to identify this object.

NOTE: Unlike most other attributes, the value of the ID attribute is not transferred when
an Object is copied. Instead, its value is undefined (and therefore defaults to an empty string)
in any copy. However, it is retained in any external representation of an Object produced by
the astWrite function.

Not sure how to handle the above in this class.

	Return type

	str

	Returns

	string identifier that can be used to uniquely identify this object

	
inverseMapping()

	Returns a new mapping object that is the inverse of this mapping.

For example, if the forward transformation of this mapping is pixel to sky,
then the forward transformation of the returned mapping
will be sky to pixel.

	
property isLinear: bool

	Returns True if the mapping is linear

	Return type

	bool

	
property isSimple: bool

	Returns True if the mapping has been simplified.

	Return type

	bool

	
property isSkyFrame: bool

	Returns True if this is a SkyFrame, False otherwise.

	Return type

	bool

	
label(axis=None)

	Return the label for the specified axis.

	Return type

	str

	
property naxes: int

	Returns the number of axes for the frame.

	Return type

	int

	
property numberOfInputCoordinates

	Number of dimensions of the space in which the Mapping’s input points reside.
This property gives the number of coordinate values required to specify an input point for a Mapping.

	Returns

	number of input dimensions described by this mapper

	
property numberOfOutputCoordinates

	Number of dimensions of the space in which the Mapping’s output points reside.
This property gives the number of coordinate values required to specify an output point for a Mapping.

	Returns

	number of output dimensions described by this mapper

	
offsetAlongGeodesicCurve(point1, point2, offset)

	Coordinates and offset value should be in the units of the frame, e.g. pixels, degrees.

In a sky frame, the line will be curved. In a basic frame, the line will be straight.

	Parameters

	
	point1 (Iterable) – a two element list/tuple/NumPy array of the first point coordinates

	point2 (Iterable) – a two element list/tuple/NumPy array of the second point coordinates

	offset (Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity]) – a distance along the geodesic sphere connecting the two points

	
setLabelForAxis(label=None)

	Set the label for the specified axis.

	
setUnitForAxis(axis=None, unit=None)

	Set the unit as a string value for the specified axis.

	
property system

	String which identifies the coordinate system represented by the Frame.
The system is Cartesian by default, but can have other values for subclasses of Frame,
e.g. FK4, Galactic.

	
property title: str

	Returns the frame title, a string describing the coordinate system which the frame represents.

	Return type

	str

	
transform(points=None)

	Transform the coordinates of a set of points provided according the mapping defined by this object.

	Parameters

	
	in – input list of coordinates as numpy.ndarray,
any iterable list accepted
2-dimensional array with shape (nin,npoint)

	out – output coordinates

Format of points:

[[values on axis 1], [values on axis 2], ...]

e.g. sky to pixel:

[[ra1, ra2, ...], [dec1, dec2, ...]]

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
unit(axis=None)

	Return the unit for the specified axis.

Plotting APIs

See Plotting Examples for examples.

Matplotlib Interface

	
class cornish.plot.matplotlib.SkyPlot(extent=None, figsize=(12.0, 12.0))

	Bases: cornish.plot.cornish.CornishPlot

A convenience class providing a high level interface for creating sky plots in Matplotlib.

	Parameters

	
	extent (Optional[ASTRegion]) – an ASTRegion that encompasses the full area to plot

	figsize (Tuple[float, float]) – width,height of the plot figure in inches (parameter passed directly to matplotlib.figure.Figure [https://matplotlib.org/api/figure_api.html#matplotlib.figure.Figure])

	
addPoints(ra=None, dec=None, points=None, style=1, size=None, colour=None, color=None)

	
Draw a point onto an existing plot.

	:widths 20 25 25
	
	header-rows

	1

	
	marker_style value

	
	style
	
	string equivalent

	
	1

	
	small circle
	
	circle

	
	2

	
	cross
	
	cross

	
	3

	
	star
	
	star

	
	4

	
	larger circle
	
	circle

	
	5

	
	x
	
	x

	
	6

	
	pixel dot
	
	dot

	
	7

	
	triangle pointing up
	
	triangle

	
	8

	
	triangle pointing down
	
	triangle down

	
	9

	
	triangle pointing left
	
	triangle left

	
	10

	
	triangle pointing right
	
	triangle right

	
	11

	…

	param points

	point should be in degrees (e.g. list or numpy.ndarray, or a pair (list/tuple) of astropy.units.Quantity values, or a SkyCoord, or a container of these (all in the same form)

	param style

	an integer corresponding to one of the built-in marker styles

	param colour

	marker plot colour

	param color

	synonym for ‘colour’

	param size

	scale point size by this value

	
addRegionOutline(region, colour='#4a7f7b', color=None, style=1)

	Overlay the outline of the provided region to the plot.

	Parameters

	
	region (Union[ASTRegion, Region]) – the region to draw

	colour (str) – a color name (e.g. black) or hex code (e.g. #4a7f7b)

	color – synonym for ‘colour’

	style (int) – line style: 1=solid, 2=solid, 3=dashes, 4=short dashes, 5=long dashes

	
figure()

	Return the matplotlib.figure.Figure [https://matplotlib.org/api/figure_api.html#matplotlib.figure.Figure] object for plot customization outside of this API.

	
show()

	Display the plot (passthrough for matplotlib.pyplot.show()).

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cornish	

 	
 	
 cornish.mapping	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	addPoints() (cornish.plot.matplotlib.SkyPlot method)

 	addRegionOutline() (cornish.plot.matplotlib.SkyPlot method)

 	addToBaseFrame() (cornish.mapping.ASTFrameSet method)

 	angle() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTSkyFrame method)

 	area (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	ast_description() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTMapping method)

 	(cornish.mapping.ASTSkyFrame method)

 	
 	ASTBox (class in cornish)

 	ASTCircle (class in cornish)

 	ASTCompoundFrame (class in cornish.mapping)

 	ASTCompoundRegion (class in cornish)

 	ASTFrame (class in cornish.mapping)

 	ASTFrameSet (class in cornish.mapping)

 	ASTICRSFrame (class in cornish.mapping)

 	ASTMapping (class in cornish.mapping)

 	ASTPolygon (class in cornish)

 	ASTRegion (class in cornish)

 	ASTSkyFrame (class in cornish.mapping)

 	astString (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTMapping property)

 	(cornish.mapping.ASTSkyFrame property)

B

 	
 	baseFrame (cornish.mapping.ASTFrameSet property)

 	boundaryPointMesh() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	boundingBox() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	
 	boundingCircle() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	bounds (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

C

 	
 	center (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	centerCoordinates() (cornish.mapping.ASTFrameSet method)

 	centre (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	containsPoint() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	
 	convert() (cornish.mapping.ASTFrameSet method)

 	corner (cornish.ASTBox property)

 	corners() (cornish.ASTBox method)

 	
 cornish

 	module, [1], [2]

 	
 cornish.mapping

 	module

 	currentFrame (cornish.mapping.ASTFrameSet property)

D

 	
 	distance() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTSkyFrame method)

 	
 	domain (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTSkyFrame property)

 	downsize() (cornish.ASTPolygon method)

E

 	
 	epoch (cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTSkyFrame property)

 	
 	equinox (cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTSkyFrame property)

F

 	
 	figure() (cornish.plot.matplotlib.SkyPlot method)

 	fillFactor (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	frame() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	frameAtIndex() (cornish.mapping.ASTFrameSet method)

 	frameFromAstObject() (cornish.ASTBox static method)

 	(cornish.ASTCircle static method)

 	(cornish.ASTCompoundRegion static method)

 	(cornish.ASTPolygon static method)

 	(cornish.ASTRegion static method)

 	(cornish.mapping.ASTCompoundFrame static method)

 	(cornish.mapping.ASTFrame static method)

 	(cornish.mapping.ASTFrameSet static method)

 	(cornish.mapping.ASTICRSFrame static method)

 	(cornish.mapping.ASTSkyFrame static method)

 	frameFromFITSHeader() (cornish.ASTBox static method)

 	(cornish.ASTCircle static method)

 	(cornish.ASTCompoundRegion static method)

 	(cornish.ASTPolygon static method)

 	(cornish.ASTRegion static method)

 	(cornish.mapping.ASTCompoundFrame static method)

 	(cornish.mapping.ASTFrame static method)

 	(cornish.mapping.ASTFrameSet static method)

 	(cornish.mapping.ASTICRSFrame static method)

 	(cornish.mapping.ASTSkyFrame static method)

 	
 	frameSet() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	framesetWithMappingTo() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTSkyFrame method)

 	fromCentreAndCorner() (cornish.ASTBox class method)

 	fromCorners() (cornish.ASTBox class method)

 	fromFITSFilepath() (cornish.ASTPolygon static method)

 	fromFITSHeader() (cornish.ASTBox class method)

 	(cornish.ASTCircle class method)

 	(cornish.ASTCompoundRegion class method)

 	(cornish.ASTPolygon static method)

 	(cornish.ASTRegion class method)

 	(cornish.mapping.ASTFrameSet static method)

 	(cornish.mapping.ASTICRSFrame class method)

 	(cornish.mapping.ASTSkyFrame class method)

 	fromFrames() (cornish.mapping.ASTFrameSet static method)

 	fromPointsOnSkyFrame() (cornish.ASTPolygon static method)

 	fullyEncloses() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

I

 	
 	id (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTMapping property)

 	(cornish.mapping.ASTSkyFrame property)

 	interiorPointMesh() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	inverseMapping() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTMapping method)

 	(cornish.mapping.ASTSkyFrame method)

 	isAdaptive (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	isBounded (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	isClosed (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	isFullyWithin() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	
 	isIdenticalTo() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	isLinear (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTMapping property)

 	(cornish.mapping.ASTSkyFrame property)

 	isNegated (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	isNegationOf() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	isSimple (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTMapping property)

 	(cornish.mapping.ASTSkyFrame property)

 	isSkyFrame (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTSkyFrame property)

L

 	
 	label() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTSkyFrame method)

M

 	
 	mapping (cornish.mapping.ASTFrameSet property)

 	mapRegionMesh() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	maskOnto() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	
 	meshSize (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	
 module

 	cornish, [1], [2]

 	cornish.mapping

N

 	
 	naxes (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTSkyFrame property)

 	negate() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	numberOfInputCoordinates (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTMapping property)

 	(cornish.mapping.ASTSkyFrame property)

 	
 	numberOfOutputCoordinates (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTMapping property)

 	(cornish.mapping.ASTSkyFrame property)

O

 	
 	offsetAlongGeodesicCurve() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTSkyFrame method)

 	
 	overlaps() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

P

 	
 	pix2world() (cornish.mapping.ASTFrameSet method)

 	pointInRegion() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	
 	points (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

R

 	
 	radius (cornish.ASTCircle property)

 	regionWithMapping() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	
 	removeCurrentFrame() (cornish.mapping.ASTFrameSet method)

S

 	
 	setLabelForAxis() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTSkyFrame method)

 	setUnitForAxis() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTSkyFrame method)

 	
 	show() (cornish.plot.matplotlib.SkyPlot method)

 	SkyPlot (class in cornish.plot.matplotlib)

 	system (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTSkyFrame property)

T

 	
 	title (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	(cornish.mapping.ASTCompoundFrame property)

 	(cornish.mapping.ASTFrame property)

 	(cornish.mapping.ASTFrameSet property)

 	(cornish.mapping.ASTICRSFrame property)

 	(cornish.mapping.ASTSkyFrame property)

 	toPolygon() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	
 	transform() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTMapping method)

 	(cornish.mapping.ASTSkyFrame method)

U

 	
 	uncertainty (cornish.ASTBox property)

 	(cornish.ASTCircle property)

 	(cornish.ASTCompoundRegion property)

 	(cornish.ASTPolygon property)

 	(cornish.ASTRegion property)

 	unit() (cornish.ASTBox method)

 	(cornish.ASTCircle method)

 	(cornish.ASTCompoundRegion method)

 	(cornish.ASTPolygon method)

 	(cornish.ASTRegion method)

 	(cornish.mapping.ASTCompoundFrame method)

 	(cornish.mapping.ASTFrame method)

 	(cornish.mapping.ASTFrameSet method)

 	(cornish.mapping.ASTICRSFrame method)

 	(cornish.mapping.ASTSkyFrame method)

W

 	
 	world2pix() (cornish.mapping.ASTFrameSet method)

 nav.xhtml

 Table of Contents

 		
 Cornish: A Python Interface for the Starlink AST WCS Library

 		
 Working With Regions

 		
 All Regions

 		
 Circles

 		
 Creating Circles

 		
 Circle Properties

 		
 Converting to Polygons

 		
 Polygons

 		
 Boxes

 		
 Compound Regions

 		
 From FITS Files

 		
 Plotting Examples

 		
 Matplotlib Interface

 		
 Other Interfaces

 		
 Region APIs

 		
 ASTRegion

 		
 ASTBox

 		
 ASTCircle

 		
 ASTCompoundRegion

 		
 ASTPolygon

 		
 Mappings and Frames APIs

 		
 ASTMapping

 		
 ASTFrame

 		
 ASTFrameSet

 		
 ASTSkyFrame

 		
 ASTICRSFrame

 		
 ASTCompoundFrame

 		
 Plotting APIs

 		
 Matplotlib Interface

_static/circle_region_plot.png
Declination

-30:00

30

-31:00

30

-32:00

w
8

-33:00

30

-34:00

30

ICRS coordinates; gnomonic projection

e
\

10:00:00 12:00:00 14:00:00
Right ascension

_static/plus.png

_static/file.png

_static/minus.png

_images/circle_region_plot.png
Declination

-30:00

30

-31:00

30

-32:00

w
8

-33:00

30

-34:00

30

ICRS coordinates; gnomonic projection

e
\

10:00:00 12:00:00 14:00:00
Right ascension

